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Executive Summary 

This document is the final version of the Dreams4Cars system architecture. It describes the architecture of the 
learning/simulation system (the offline dreaming machinery) and the architecture of the agent (the runtime 
artificial driver agent). 

This document completes D1.1 (version 1 of the system architecture) illustrating the final configuration but 
without repeating (as much as possible) concepts that did not change or have already been illustrated.  In par-
ticular, considerations concerning traditional design practices and the expected benefits of the Dreams4Cars 
architecture have been given in D1.1 in both the executive summary and section 1, and are here summarized at 
the end of section 2. 

This document gives a system-level description that is meant to be an introduction to the Dreams4Cars ap-
proach. Details concerning implementations are given in the public deliverable D2.3 for what concerns the agent 
and in the upcoming public deliverable D3.3 for what concerns the dreaming machinery1.  

 

The agent uses a biologically inspired architecture with 5 loops (Section 2): 

1. The action priming loop (dorsal stream), which converts sensory data into activation patterns of the 
motor cortex, encoding the many instantaneous action possibilities in parallel; 

2. The frontal cortex loop which implements a logical reasoning system that can steer the agent behaviour 
via the biasing of action selection; 

3. The action selection loop (basal ganglia), which implements robust and bias-able selection of one action; 
4. The cerebellar loop, which learns forward and inverse models of the vehicle dynamics; 
5. The motor output loop which converts the selected actions into vehicle specific commands via learned 

inverse vehicle dynamics models. 

 

Simulations and learning occur offline in different places and ways (Section 3): 

a) Episodic simulations occur via two different mechanisms:  
- The convergence-divergence zones (CDZ) organization of the dorsal stream learns compact repre-

sentations of events that may be used to instantiate a first form of episodic simulations. 
- Symbol recombination via Genetic Algorithms produce a second form of episodic simulations that 

complements the first.  
b) Learning from episodes involves the running of detailed simulations in the OpenDS environment. The 

value of action sequences, generated by a Logical Reasoning Module that embeds the Highway code, 
are learned at the time of action selection via a software module that implements Reinforcement Learn-
ing.   

c) Embodied simulations occur as follows: 
- The cerebellar loop learns forward and inverse models of the vehicle dynamics.  
- These are used to instantiate embodied simulations for low-level and tactical level control and for 

the synthesis of the dorsal stream loops that compute the salience function. 
d) Learning from embodied simulations is carried out via direct and indirect optimal control (that learns 

the salience function for tactical level manoeuvres). 

  

                                                             

1 D2.3 and D3.3 also include updates to the implementation plans that were formulated in D1.1 (test plans up-
dates are given in the public deliverable D5.2). 
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1 System Architecture  
The Dreams4Cars system is composed of 3 different environments (Figure 1). This has not changed since release 
1 of this deliverable; hence the purpose of the three environments is only briefly reminded. 

 

 

Figure 1: Dreams4Cars system Architecture. 

 

1. The Real Driving environment corresponds to the human “wake” state. In this environment the Co-
driver2 agent operates the vehicles and collects information for creating episodic and embodied simula-
tions. 

2. The Simulation environment corresponds to the human “dream” state. In this environment (a copy of) 
the agent operates in a virtual world where fictitious situations are self-generated. Optimization of the 
agent sensorimotor abilities via two different dreaming machineries termed “episodic” and “embodied” 
simulations have been developed and occurs here in various forms.  

3. The Quality Assurance environment is an auxiliary environment where a copy of the optimized agent 
(output from point 2) is tested against a library of test cases; the performance of the agent is assessed 
with several types of metrics (possibly including the Euro NCAP scenarios); the progress in agent abilities 
is monitored.  

The current release of this deliverable (D1.3, System Architecture, release 2) reports the final results of WP1.2 
(system architecture of both the runtime and offline components). It describes the final architectures of the 
agent in itself and of the dreaming mechanisms. Considerations concerning traditional design practices and the 
expected benefits of the Dreams4Cars architecture have been given in D1.1 in both the executive summary and 
section 1 and are not repeated here except for a summary at end of section 2. More information concerning the 
implementations of the agent and of the simulation system are given in the public deliverables D2.3 and D3.3. 

A project video that gives a general idea of the agent (tailored for communication, not for scientific dissemina-
tion) is given at: https://youtu.be/0mylY6_ZDJY  

                                                             
2  The agent driving the vehicles in this project is termed “Co-driver agent” or shortly “Co-driver”. 
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2 Final agent architecture 
The final version of the agent architecture is shown in Figure 2.  

Compared to the initial architecture the main innovation is a clearer definition of the action biasing mechanisms 
(in the frontal cortex loop). Furthermore, the internal organization of the already existing loops (dorsal stream, 
cerebellum and basal ganglia) has been better specialized and specified.  

 

 

Figure 2: Final agent sensorimotor architecture. 

 

It has to be mentioned that some loops (dorsal stream, cerebellum and frontal cortex) operate in slightly differ-
ent way in the offline versus online mode, as explained below. 

2.1 The dorsal stream and the motor cortex 
In online operation the purpose of the dorsal stream is detecting (all) affordable actions and creating action 
plans. The output of the dorsal stream takes the form of active and inhibited regions (see examples in Figure 3) 
of a structure shown in Figure 2, label c, corresponding to the biological “motor cortex”. A two-dimensional 
array is used for the purpose, where the two dimensions correspond to abstractions of the longitudinal and 
lateral control (longitudinal jerk and curvature rate). 

The dorsal stream may be implemented either algorithmically or with neural networks or with hybrid implemen-
tations that combine simple neural network building blocks with algorithmic wrappers (Dreams4Cars use this 
latter, e.g., [1]). The training of the dorsal stream is based on optimal control, using the learned vehicle forward 
models, via episodic simulation processes described in the next section. 

As the main online use of the dorsal stream is converting sensory data (from the available automotive sensors) 
into active/inhibited regions of the motor cortex, the dorsal stream may be trained to operate with any set of 
sensors and hence the architecture is sensor agnostic as long as sufficient sensor data is produced.  

Furthermore, in the online use the dorsal stream may also operate in conjunction with the sensory anticipation 
produced by the cerebellum as if it were just another source of data: simulated. This may have several uses [2], 
[3], among which filtering of perceptual data and switching between different learned forward/inverse models 
(D2.3 section 3). 

Automotive
sensors

Motor Output

Cerebellum

Action Priming
(dorsal stream)

Action Selection
(basal ganglia)

motor
cortex

sensory
cortex

a

b
c

Higher-level
Action biasing



D1.3 - System Architecture (release 2)   Grant Agreement No. 731593 

Dreams4Cars  Page 9 of 19 

Beside the online use of the dorsal stream, there is another use offline, for creation of episodic simulations that 
will be described in the section 3. 

2.1.1 Modular organization 
The dorsal stream may be conveniently organized in modular structures.  

- First excitatory and inhibitory circuits may be realized in parallel and separately (Figure 3, left: the three 
affordable lanes create three humps of activity encoding the longitudinal/lateral control of the three ac-
tions; right: obstacles create inhibited regions cancelling actions that might result in collisions).  

- Second, for both excitatory and inhibitory circuits, re-use of elementary modules is possible. For example, 
the algorithm/network that computes the peak of activity for goal b, may be re-used for a and c. Similarly, 
a module that creates inhibitions for one obstacle may be re-used for all obstacle and, within the same 
obstacles for the individual future positions of its predicted trajectory (e.g., [1] or D2.3 section 2.1.4.2).  

Modularity contributes significantly to the safety, interpretability and predictability of the dorsal stream when 
it is implemented with neural networks. Building blocks may be tested singly, their output can be interpreted 
and their collective behaviour will ensure collision free behaviours once they have been proved to be collision 
free individually [1]. 

 

                 

Figure 3: Dorsal stream function. Left: the three affordable lanes create three humps of activity encoding the 
longitudinal/lateral control of the three actions; actions that allows to remain in the road but not 
exactly in the lanes have less salience (shaded area) so that they are selected only as a last resource. 
Right: obstacles create inhibited regions cancelling actions that will likely produce collisions; close 
encounters are partially inhibited so that they are chosen only as a last resource. 

 

2.2 Action biasing and action selection 
It is worth stressing that the goal of the dorsal stream is not trajectory planning in the traditional sense (creating 
one optimal trajectory). Instead the goal is detecting affordances and creating a value map (the motor cortex – 
let us call it “mc”) for the selection of the longitudinal/lateral control (that when iterated produces a trajectory).  

The actual selection of action is postponed, and this allows to combine action possibilities with higher-level 
directives and biases that may derive from a hierarchy of intentions; either derived from programmed traffic 
rules or from learned action sequences as follows.  

For example, let us assume that the intention of turning right at b is instantiated at a higher level. Hence the 
yellow-marked lane in Figure 4 is highly desirable. The activation pattern corresponding to this intention is cre-
ated (Figure 4, right) and is normalized (let us call it a biasing gain matrix “B”). It identifies all controls that comply 
with goal b. Let the “strength” of the intention be represented by a scalar (possibly learnable) weight 𝑤&. The 
actual action selection is then carried out by weighting the motor cortex according to the shape function given 
by the biasing matrix B and the intensity given by weight 𝑤&. Roughly speaking (albeit the actual algorithm is 
more complex) the decision is not carried out on the motor cortex in itself, but on a modified motor cortex mc’ 
as follows: 
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𝑚𝑐' = 𝑚𝑐 ∗ (𝑤&𝐵) 

where “*” stands for the elementwise product. This way higher-level intentions (such as sequences of actions) 
may steer the agent behaviour. 

- However, they are not instantiated exclusively and there always is the possibility to carry out another 
decision should the preferred choice be too difficult.  

- Furthermore, high-level intentions operate in a sandbox, where only safe actions created in “mc” can be 
biased and then selected; this way, any error in the high-level intentions is rejected by the lower level 
control as will be shown below. 

For example, the highest-value action in Figure 3, left is a (remain in the current lane). Without any bias this 
would be chosen. Should the higher-level intention of the agent be taking exit b, the biasing matrix B may be 
used to artificially increase the importance of option b, eventually leading to the choice of b if 𝑤&  Is large enough. 
The weight 𝑤&  may vary and hence, while the biasing matrix B specifies which controls corresponds to “b”, the 
weight specifies how strong the preference for “b” is (should the original motor cortex salience of “b” in Figure 
3, left, be very small –for example because it is a very difficult manoeuvre– it may happen that b is not selected 
anyway). 

 

 

Figure 4: Biasing action b.  A normalized copy of the motor cortex with the salience map of action b is created 
and used to weight the motor cortex itself. The weight may vary and hence, while the biasing ma-
trix specifies which controls corresponds to “b”, the weight specifies how strong the preference 
for “b” is (should the motor cortex salience of “b” be very small –for example because it is a very 
difficult manoeuvre– it may happen that b is not selected anyway). 

 

This way it is possible to steer the instantaneous selection of actions including choosing low value actions that 
are necessary for an action sequence that achieves higher rewards in the longer-term (for example a safe over-
take). For this, in principle, the weights 𝑤&  may be learned via reinforcement learning [4], hence learning when 
and how intentions and action sequences are safe.  

In any case, since no action is instantiated exclusively, a strong bias B would be necessary if the curve were 
significantly more difficult than driving straight. Furthermore, if the curve did not exist or turned out to be 
blocked, whatever the bias strength it would not be chosen, because the activity at b in the main motor cortex 
would be zero (so 𝑚𝑐' has no selectable peak at 𝑏).  

Hence, once the low-level behaviour is safe, steering for longer term-strategies are automatically safe because 
no unsafe action (inhibited in the main motor cortex) may ever be selected. 

If new action sequences are formulated (for example the highway code rules are edited), they turn out into new 
action sequences creating new biasing matrices. So, the agent may in principle incorporate new strategies into 
the same unifying action-selection mechanism.  

The action selection algorithm of choice is the Multi Hypothesis Sequential Probability Ratio Test (MSPRT) [5]. 
The MSPRT algorithm accumulates evidence for competing actions (hypotheses) over time, and outputs the 
action corresponding to the accumulated evidence that first crosses some specified threshold (the threshold is 
a hyper-parameter that requires tuning to trade-off speed and accuracy). Compared to a winner-take-all (WTA) 
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action selection algorithm that does not accumulate evidence over time, the MSPRT is more robust to noise. 
However, MSPRT does tend to add latency to action selection compared to a WTA method. It is believed that 
the basal ganglia implement such a kind of decision mechanism [6].  

Details on the implementation of the biasing mechanism and the MPSRT algorithm are given in D2.3. 

2.3 Learning forward/inverse models (the cerebellar loop) 
In the online operation the cerebellar loop collects copies of the motor commands and sensory data that are 
(among the others) consequences of the execution of the motor commands. This way, both forward models and 
inverse models may be trained [7]. 

The particular interest for Dreams4Cars is to learn forward models for the vehicle dynamics to be used as build-
ing blocks for embodied simulations, such as the discovery of motor sequences to achieve short-term goals 
(D3.3, [8], [9]) and the training of the dorsal stream (computing salience according to the real vehicle dynamics). 

Another goal is learning inverse models to be used for vehicle control, which allow to convert the abstract con-
trol parameters (longitudinal jerk and curvature rate) encoded in the motor cortex space into the actuator com-
mands of a specific vehicle. This way adaptation to vehicles with different dynamics or to different environments 
may be achieved with switching between appropriate inverse models. 

A final, inline use of the forward model is to produce sensory anticipations that have several applications as 
mentioned in section 2.1. 

2.4 Vehicle control 
The control approach used in Dreams4Cars is based on the execution of kinematic trajectories via the use of 
inverse models (see D2.3). 

Figure 5 shows the control scheme. The motor plans instantiated in the dorsal stream are encoded in the ab-
stract longitudinal/lateral control space of the motor cortex (longitudinal jerk and curvature rate). They are con-
verted into the command for the actuators of a specific vehicle by means of inverse models of the vehicle dy-
namics. Updates to motor plans are continually produced by the Co-driver. 

Any inaccuracy of the inverse model (together with environmental disturbances) may in turn cause deviations. 
The stability of the control loop of Figure 5 has thus been studied in [10], concluding that there are very large 
margins of stability even if the inverse model were not finely tuned/adapted. 

 

 

Figure 5: Inverse model approach for vehicle control. 
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2.5 Summary of the expected benefits of the Dreams4Cars Agent Architecture 
The expected benefits of the above architecture lie in the largely autonomous discovery of salient situations and 
self-reconfiguration of sensorimotor control, with increase of the number of scenarios that can be studied and 
reduction of human coding needs. Furthermore, the chosen network-of-network architecture produces robust 
safe emergent behaviours (emerging from simple verifiable building blocks). Finally, the agent is better suited 
for lifelong learning, as novel situations may trigger the dreamlike learning process. 

The advantages may be listed as follows: 

1) The agent learns models of the vehicle dynamics and can use the models for chassis and tactical level 
control optimizations. This means adapting to different vehicles dynamics and (possibly on the fly) to 
different environments and operating conditions; it also means predicting vehicle response for sensory 
anticipation and condition monitoring/failure detection. It also means using learned models within em-
bodied simulations to discover (via direct/indirect optimal control) the value of short-term and tactical 
level actions (learning action salience based on learnt vehicle/environment). 

2) The agent learns compact representations of episodes, and can use them to create new episodes, from 
which to learn higher-level strategies via reinforcement learning.  

3) The agent may incorporate symbolic rules (in particular the rules of the highway codes) via biasing mech-
anism that act on top of a safe sandbox composed of the low-level motor control substrate. Where 
schematic-legal manoeuvres are no longer possible the agent would still evaluate physically feasible 
trajectories as a last resource. 

4) The network-of-network architecture may be trained for the individual components separately. 
5) The modular architecture of the dorsal stream significantly contributes to the safety verification: indi-

vidual modules (especially thanks to the fact that the motor cortex is interpretable) may be tested in 
isolation and once they are deemed to be safe, their collective superposition will also be safe (such 
property is more difficult to grant for non-structured neural networks and for end-to-end collectively 
trained networks). 

6) The creation of fictitious situations (both low-level embodied simulations and the high-level episodic 
simulations) is largely automatized. Where in the traditional approaches, simulations are human di-
rected (which means that every possible situation have to be conceived and programmed in the simu-
lation by human designers), here simulations are automatically created, going beyond simple re-sam-
pling of recorded events, and hence increasing the number of cases that can be examined and used for 
training. 

7) The agent can self-reconfigure with large degree of autonomy. While in traditional approaches, once a 
critical situation is detected and diagnosed the software has to be re-coded by a human driver, with the 
Dreams4Cars approach neural network components are further trained on newly discovered situations 
(or new vehicle dynamics and environments) requiring less human designer intervention.  

8) Novel situations where the agent underperforms (not necessarily accidents) become focal points for 
starting new (lifelong) learning processes, with reduced human supervision needs; whereas malfunc-
tions must be manually studied in details with the traditional approach. 
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3 Simulation system 
The simulation system is the body of methods and algorithms that allow the implementation of the offline 
(dream state) simulations and learning (see the confidential deliverables D3.1 and D3.2 and the next public de-
liverable D3.3). 

3.1 Episodic and embodied simulations 
Dreams4Cars uses a recent idea concerning the existence of two distinct biological imagery mechanisms: epi-
sodic simulations and embodied simulations [11]. The two forms differ with respect to neural mechanics and 
brain locations, and –functionally– with respect to content detail and time-scale:  

1) Episodic simulations rely on neocortical/hippocampal systems. They generally focus on events at higher 
abstraction and occurring on longer time scales. For example, imagining that a pedestrian standing on 
the sidewalk might suddenly cross the road is an episodic simulation. 

2) Embodied simulations rely on cerebellar loops. They include more details in terms of movement, per-
ception and work on shorter time scales. For example, predicting the vehicle response to a particular 
steer swerve is an embodied simulation. 

3.2 Episodic simulations 
There are two distinct mechanisms for episodic simulations. One, more closely inspired to the biology, works 
better for simple episodes as well as for episodes related to the modelling of other road users’ behaviours, and 
is well suited for creating extraordinary situations. Another, more abstract, works better for more complex epi-
sodes allowing the recombination of many different items, but is less suited for creating extraordinary situations. 

3.2.1 Episodic simulation originating in convergent-divergent dorsal stream 
The dorsal stream, has a slightly different implementation between online and offline use (Figure 6). For the 
latter in particular, it has a convergent-divergent structure that follows the organization proposed by Damasio 
[12] (for the online use it does not need). Hence, sensory data collected in “a” (Figure 2) are initially compressed 
into a reduced size tensor “b” (we speak here of a deep neural network implementation), from which they are 
expanded to the motor cortex “c”. Backwards (offline use) signalling is postulated by Damasio, which means that 
information may also flow backwards from “c” to “b” and, in particular, from “b” to “a”.  

 

 

Figure 6: Convergence-divergence zones implementation of the dorsal stream for episodic simulations. 
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The branches a-b (convergent), b-c (divergent) and b-a (divergent) are implemented with neural networks in 
Dreams4cars and are exploited for creation of episodes. The process exploits the fact that, the convergence-
divergence zones force the categorization of sensor-motor data in concepts at “b” (actually across the whole 
CDZs). Hence, during wake time, compact representations of events are learned at “b”. Note that the conver-
gence-divergence zones a-b-c resemble the structure of an auto encoder (AE) except the output in the motor 
cortex (see example [13]). This way the compact representation “b” is optimized for what is relevant for actions 
(rather than being optimized to reproduce the input).  

Sensor imagery, and the creation of episodes, is thus obtained by sampling the feature space “b” and running 
backwards the branch b-a. With careful organization of the neural networks, novel and even extraordinary 
events may be created. Episodes created in this way may be used as components of simulations as described in 
the next section (for example creating a car that behaves in an unusual way). The episodes may also be used as 
part of embodied simulation described in section 3.3 (for example learning an obstacle avoidance manoeuvre 
for a car behaving in the unusual way just created). 

3.2.2 Higher-level episodic simulation via symbol re-combinations 
The basic function of episodic simulation via symbol recombination allows to create different types of episodic 
simulations of traffic situations that an autonomous car controller (i.e. the Co-driver in this project) can learn 
new behaviours from.  

The system for the episodic simulation via symbol re-combination consists of three main parts: a) the episodic 
generation mechanism creating novel scenarios, b) a logical reasoning module (LRM), c) a tool-chain that trans-
forms a scenario-description into the OpenDS simulation files with the car simulator OpenDS.  

Episodic generator 

The mechanism for creating the dream scenario, henceforth referred to as the episodic generator, is based on 
the notions of recombination and mutation as used in genetic algorithms. The motivation of using techniques 
inspired by genetic algorithms for the episodic generator is that the basic operators of selection, recombination 
and mutation are a flexible means for controlling the amount of change, the complexity, and the diversity of the 
dreams. The aspects of the traffic situation that can be recombined and modified to novel traffic situations are 
described in the Section “Dreams in OpenDS”.   

The logical reasoning module 

The LRM (see public deliverable D2.3) is a module reasoning in relation to the legal road rules, i.e., the Highway 
code (HWC). The subsumption Perception Action hierarchy embodied within the LRM, implements the symbolic 
(i.e. high-level representational) component of the Dreams4Cars system, which is responsible for high-level 
scene interpretation/annotation and for introducing legal biasing in intention (section 2.2). The module operates 
on an ad hoc internal (schematic) symbolic representation of the traffic situation and returns action sequences 
for longer term goals3 (e.g. the transitions required to carry out an overtake manoeuvre).  

The LRM subsumption framework is constrained to have the capability to act reversibly, that is to say, in a gen-
erative manner via reverse PA logical-variable instantiation, such that hallucinated high-level legal road config-
urations are spontaneously generated alongside the corresponding legal intentionality in order to instantiate 
the offline dreaming process. The latter is an instance of top down exploratory PA motor babbling, in which 
theorem proving-via-resolution is applied to random instantiations of logical variables in order to establish sce-
narios consistent with the legal road protocols.  

  

                                                             
3 These are converted into biasing matrices as shown in section as shown in section 2.2 and their priority will be 
defined by weights that are learned as explained in section 3.1.4. 
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Dreams in OpenDS 

The simulation of the episodic dream scenarios is realized in the open source driving simulator OpenDS devel-
oped by DFKI. The interface for connecting the generated scenarios with OpenDS is a xml-scheme which through 
a tool-chain (described in full in confidential deliverable 4.3) generates the physical simulation.   

The OpenDS xml file includes the following road elements, which consequently can be recombined into novel 
traffic scenarios for the Co-driver: 

• Geometry elements that describe the shape of the road.  
• Number, types, geometries and other attributes of lanes.  
• Traffic directives (signs, speed limits etc.). 
• Traffic elements (vehicles and their behaviours). 
• Pedestrians and descriptions of their behaviour. 

The xml-scheme has provided a flexible way of realizing dream scenarios and can easily be extended as new 
features may be added to the OpenDS simulator for more complex and diverse dream scenarios. 

The dream process 

The dream process consists of the following steps (excluding the learning of new behaviours described in Section 
3.2.3).  

(1) the episodic generation mechanism and the LRM creates a dream scenario of previous traffic situations 
(episodes or other road users’ behaviours created with section 3.2.1 may be added here), 

(2) the scenario is encoded as an xml-file, 
(3) a tool-chain transforms the xml-description into an a physically realistic simulation of the dream sce-

nario in the vehicle dynamics simulator OpenDS 
(4) the Co-driver controls the vehicle in the OpenDS simulation, the Co-driver logs inputs/outputs and a 

logical reasoning module derives semantic information about the traffic situation at different levels of 
abstraction (called semantic annotations) from the Co-driver, 

(5) the log is analysed and the analysis generates input to the episodic generation mechanism and the pro-
cess re-starts. 

Thus, the dream starts by having a particular type of traffic situation consisting of a particular set of objects, 
road structure, traffic density et cetera, which is then transformed into new dreams based on the Co-driver 
performance and progression of learning (described in the following sections).  

3.2.3 Learning Action Selection from Episodes 
The main goal of episodic simulation is learning of high-level strategies (what is better/safer to do in a given 
context). This is carried out by learning the biases 𝑤&  (as function of the context) for different action sequences 
generated by the LRM.  

For an organism to ensure its survival, or for an automated vehicle to drive without crashing, one key computa-
tional problem that it must solve, is the clean and decisive selection of which action it is going to perform next.  
This is a difficult problem to solve in real-world situations because the environment is a noisy and largely unpre-
dictable place.  Noise in sensory input data could lead to the selection of an inappropriate action, or it could lead 
to the agent switching actions constantly, never persisting with one action to its completion. 

In the vertebrate brain, it is believed that a group of sub-cortical structures known as the basal ganglia process 
action selection.  It is this neural system that solves the problems outlined above.  It has been shown that the 
function of the basal ganglia can be approximated by a decision-making algorithm; the multi-hypothesis sequen-
tial probability ratio test (MSPRT) (see D2.3).  This algorithm has been shown (under certain assumptions) to 
perform optimally, it chooses the action for which there is the most evidence in the shortest time possible.   

Short-term and long-term “actions” 

A separate but related question is what constitutes an action? The definition of “action”, in the context of driv-
ing, means different things at different levels of description.  For example, at a high level, an action might be a 
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manoeuvre; lane follow; overtake; make right turn, etc.  At a lower level, an action is what control inputs need 
to be made to follow the desired path.  What separates these two levels of actions is the timescale over which 
they are performed.  The higher level is evaluated over timescales of the order of seconds to tens of seconds, 
whereas the lower level is evaluated over much shorter timescales.  This seems to be the way that the vertebrate 
brain is organised with recurrent loops through the basal ganglia and cortical areas, which deal with many dif-
ferent levels of information processing. 

Thus, we think that the problem of action selection in driverless cars may be best tackled hierarchically: a higher 
level selects which manoeuvre to perform, and a low-level selection mechanism selects how best to perform 
that manoeuvre.  The Dreams4Cars agent therefore includes action selection at these two hierarchical levels, 
with one MSPRT deciding which manoeuvre to make over relatively long timescales, and second MSPRT deciding 
which control commands to implement on the very next time-step (Figure 7).   

 

 

Figure 7: Action selection occurs on two level. A first selection occurs at higher-levels where one (or a few) 
actions proposed by the LRM are given higher weights 𝑤&. Weights and bias matrices 𝑤&𝐵 are then 
passed to the lower-level to bias the motor cortex 𝑚𝑐. 

 

The higher level of action selection interacts directly with the logical reasoning module (LRM).  Put simply, the 
LRM encodes the rules of the road: what is allowed or not allowed manoeuvre.   

The LRM first vetoes any control signals that would lead to car entering a road position that violates the highway 
code. Vetoes are translated in very low weights 𝑤&  (so that manoeuvres that violate the traffic rules are saved 
only as a last resource to avoid collisions).  

Reinforcement Learning. 

After vetoing what remains is a list of legally permitted manoeuvres, with no information on how best to choose 
between them. One remaining question is thus how does the high-level action selection loop choose between 
options that look all identically desirable? For example, on the motorway the agent is allowed to follow the slow-
moving car in front, but it is also allowed to change lane and speed up to the speed limit. If both are legal, how 
might a vehicle choose which action is best to perform? Namely how does the agent discover convenient and 
safe action sequences? 

In the vertebrate brain, the answer to this question is “Reinforcement Learning” (RL): the process by which 
actions become more likely to be performed again in future, if they led to rewarding consequences.  There is a 
great deal of theoretical work on RL dating back half a century or more, but it is only recently, that machine 
learning has developed to such a state that we are able to begin to use RL on large-scale real-world problems.  
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The vertebrate brain has been shown to perform RL on connections between the cortex and one of the major 
input nuclei of the basal ganglia known as the “striatum”. The connections between the cortex and the striatum 
are either made stronger or weaker depending on the consequences of the preceding actions.  Thus, these cor-
tical-striatal connections encode some measure of the desirability of performing each particular action given the 
context in which the agent finds itself.  Since this process is occurring at the input of the action selection mech-
anism, we can model this process by placing a Reinforcement Learning neural network on the input to the high 
level MSPRT.  This RL network learns the relative desirability (𝑤&) of each of the manoeuvres that have been 
identified as being legal by the Logical Reasoning module, and then the high level MSPRT effectively prioritizes 
the most desirable manoeuvres. 

3.3 Embodied simulations 
Embodied simulations are well suited for learning low-level chassis control and tactical-level control (namely the 
value of different manoeuvres). It is via embodied simulations that, for example, an agent can learn which eva-
sive manoeuvre is best in which context (where the context is the learned forward model, which differ from one 
vehicle to another and from one environmental condition to another).  

3.3.1 Learning forward/inverse models 
This section deals with the learning of forward models using artificial Neural Networks. These (simple) networks 
are intended to implement sensory prediction caused by motor commands.  

Inspiration may be found in paper [12] and, in particular, from the architecture of Cerebellar Adaptive Filters, 
and the way these filters can be trained. Despite these models are inspired from the biological organization of 
the “cerebellar chips”, it turns out that there are several analogies with traditional Control Theory approaches, 
in particular, the weights of the filter may represent the impulse response of the modelled dynamic plant; the 
process of learning is somewhat equivalent to the estimation of the Finite Impulse Response (FIR) of a moving 
average (MA) process. 

As newer samples of training data become available (the agent motor commands and resulting sensory effect 
are continuously collected) the filters may be re-trained offline (i.e., at “sleep” state), reaching good estimates 
of: a) the underlying dynamical process, b) its uncertainty and c) the sensory noise.  

Finally, consistent with the overall philosophy of the Dreams4Cars, we do not use a brute-force big-data ap-
proach. Instead we embed into the networks some form of a-priori knowledge about the characteristics of the 
plant. This “pre-wired” knowledge may be as little as specifying which are the causal input and output, which 
variable is the derivate of which other, or which structure the equations modelled by the network should ap-
proximately have. These ideas are discussed in paper [9]. Providing such prior knowledge greatly enhances the 
robustness and efficiency of the learning process without significantly diminishing the network modelling power 
(e.g., discovering that acceleration is the derivative of the velocity in a noisy environment would require lot of 
data, whereas this kind of relation can be wired into the network structure beforehand with no side effect) [8].  

3.3.2 Learning from embodied simulations via Direct/Indirect Optimal control 
Embodied simulations, do not necessarily need the complete vehicle dynamics simulation environment (as it is 
for episodic simulations). Indeed, the learned forward models may be used for simulations themselves, to try 
and optimize sequences of commands to achieve particular goals. Embodied simulations can thus be used with-
out the complete OpenDS environment (and run much faster); they can be to some extent combined with simple 
episodic simulations of the CDZ type (section 3.1.2); for example, learning evasive manoeuvres in response the 
behaviour of another agent that is generated by episodic simulation. 

Learning of this type is equivalent to the solution of Optimal Control problems based on the learned dynamics. 
Both direct and indirect Optimal Control problems are formulated and solved. Indirect problems are used on the 
Calculus of Variations and the Pontryagin principle.  Direct problems are formulated as learning problems where 
a neural network learns the control input sequence that, given the context and vehicle initial state, optimizes 
the vehicle trajectory with the actual vehicle dynamics. Properly formulated loss functions define the optimality 
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criteria. The result of optimal control solution (the value for potential control choices) is mapped onto the lat-
eral/longitudinal control map ultimately learning the salience function of the dorsal stream (Figure 3).  
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