

This project has received funding from the European Union's Horizon 2020 research and innovation
programme under grant agreement No 731593

Dream-like simulation abilities
for automated cars

Grant Agreement No. 731593

Deliverable: D2.3 – Report on the Runtime system (public version)

Dissemination level: PU - Public

Delivery date: 27 December 2018

Status: Final

Deliverable 2.3 Report on the Runtime system (public version) Grant Agreement No. 731593

Dreams4Cars Page 2 of 29

Deliverable Title Report on the Runtime system (public version)

WP number and title WP2 Runtime system

Lead Editor Mauro Da Lio, UNITN

Contributors

David Windridge, MU

Andrea Saroldi, CRF

Creation Date 24 December 2018 Version number 0.5

Deliverable Due Date 31 December 2018 Actual Delivery Date 27 December 2018

Nature of deliverable

x R - Report

 DEM – Demonstrator, pilot, prototype, plan designs

 DEC – Websites, patents filing, press&media actions

 O – Other – Software, technical diagram

Dissemination Level/ Audi-
ence

x PU – Public, fully open

 CO - Confidential, restricted under conditions set out in
MGA

 CI – Classified, information as referred to in Commission De-
cision 2001/844/EC

Version Date Modified by Comments

0.1 24 December 2018 Mauro Da Lio Conversion of D2.2 and D2.1 into D2.3

0.2 27 December 2018 Mauro Da Lio Further work on conversion.

0.3 27 December 2018 Andrea Saroldi Minor comments.

0.4 27 December 2018 David Windridge Review/Minor text amendment.

0.5 27 December 2018 Mauro Da Lio Final version approved.

Deliverable 2.3 Report on the Runtime system (public version) Grant Agreement No. 731593

Dreams4Cars Page 3 of 29

Executive Summary

This document is the public description of the Dreams4Cars Agent.

The document describes the multiloop agent architecture and how the individual loops contribute to the cog-
nitive abilities of the agent, focusing on the runtime part of the agent (the dreaming mechanisms will be de-
scribed in D3.3).

The document complements D1.3 (System Architecture, release 2) and provides details, references and guide-
lines for the implementation of an agent able to produce the cognition abilities targeted by Dreams4Cars.

Deliverable 2.3 Report on the Runtime system (public version) Grant Agreement No. 731593

Dreams4Cars Page 4 of 29

Table of Contents

1	 Objectives of this deliverable ... 8	
1.1	 System-level	architecture	..	8	
1.2	 Agent	architecture	...	8	

1.2.1	 Sensorimotor loops .. 8	
1.2.2	 Simulation and learning mechanisms .. 9	

2	 Implementation .. 10	
2.1	 Dorsal	stream	..	10	

2.1.1	 Working principles .. 10	
2.1.2	 The salience function .. 10	
2.1.3	 Formal definition of salience and methods for computation ... 11	
2.1.4	 Modular architecture ... 12	

2.1.4.1	 Excitatory circuits .. 12	
2.1.4.2	 Inhibitory circuits... 12	

2.1.5	 Convergent-divergent network structure for episodic simulation ... 13	
2.2	 Biasing	loop	(frontal	cortex	loop)	..	13	

2.2.1	 Biasing principle ... 14	
2.2.2	 The Logical Reasoning Module .. 15	

2.2.2.1	 PA Subsumption Design Principle Adopted by the LRM .. 15	
2.2.2.2	 Interlayer Interface Structure of the LRM ... 16	

2.2.3	 Bottom-up Communication from the Pre-LRM Layer During Runtime (Semantic Annotation &
Logico-Legal Scene Representation) .. 17	
2.2.4	 Top-down communication from the LRM (Legal intention Grounding) .. 18	
2.2.5	 Dreaming Initiation via Top-down Communication of Legal-Perceptual Priors (LRM Percept-Motor
Babbling)... 19	

2.3	 Action	selection	loops	...	20	
2.3.1	 The MSPRT Algorithm ... 20	

2.4	 Cerebellar	stream	..	22	
3	 Integration of the agent in real and virtual vehicles ... 23	
3.1	 Vehicle	control	paradigm	..	23	

3.1.1	 Traditional approaches ... 23	
3.1.2	 Inverse model approach ... 23	
3.1.3	 Software (functional) implementation .. 24	

3.2	 Interoperability	of	high-level	behaviours	in	vehicles	of	different	types	..	25	
3.2.1	 CRF vehicle ... 26	
3.2.2	 DFKI vehicle .. 27	

Deliverable 2.3 Report on the Runtime system (public version) Grant Agreement No. 731593

Dreams4Cars Page 5 of 29

4	 Bibliographical References.. 28	

Deliverable 2.3 Report on the Runtime system (public version) Grant Agreement No. 731593

Dreams4Cars Page 6 of 29

List of Diagrams

Figure 1: System architecture (from D1.3, Figure 1 – see D1.3 for explanations). ... 8	
Figure 2: Agent architecture (from D1.3, Figure 2). .. 9	
Figure 3: The dorsal stream computes activation patterns in the artificial agent motor cortex. The intensity of

activation encodes the strength/urgency of corresponding actions, the location encodes longitudinal
and lateral control to select that particular action. The dorsal stream is implemented with streams of
two types. a) Left: parallel streams that compute active regions in the motor cortex, encoding
affordable lanes/roads; b) Right: parallel streams that compute inhibited regions, encoding obstacle
and mandatory traffic directives (traffic lights, stop, etc.). .. 10	

Figure 4: Inhibitions caused by obstacles are evaluated as inhibitions for space-time future positions predicted
for obstacle motion [9]. .. 12	

Figure 5: Convergence-divergence zones implementation of the dorsal stream for episodic simulations (see
D1.3, section 3.2.1). .. 13	

Figure 6: Biasing principle. Suppose the long-term goal is to remain in the lane (a, green shading). Suppose also
that taking exit b is not desired (which means that a secondary priority is to stay in the main road
and, if necessary c has to be preferred to b). Centre: the salience function of goals a and b are
computed (c is neutral and not shown) and used via variable weightings to artificially increase the
strength of hump a and decrease the strength of hump b in the motor cortex (right). 14	

Figure 7: Run-time system PA hierarchy (OC refers to the optimal control trajectories existing at the physical
layer). ... 16	

Figure 8: Run-time loop; bottom-up semantic annotation ... 17	
Figure 9: Legal-Perceptual Intentional Grounding from the LRM .. 18	
Figure 10: Dream instantiation via the top-down functionality of the LRM .. 19	
Figure 11: Action selection architecture. Left: Logical Reasoning Module identifies bounding boxes around legal

and illegal locations. High-level Selection loop chooses which of the legal bounding boxes are best
and assigns priority weights. The output of the High-level selection loop biases low level control via
biasing matrices and weights. The low-level selection loop combines weights with the motor cortex
as in section 2.2.1 and completes the final selection. .. 20	

Figure 12: Inverse model approach for vehicle control... 24	
Figure 13: Functional diagram of software implementation. .. 25	
Figure 14: Inverse model implementation in the CRF vehicle. .. 26	
Figure 15: Inverse model implementation in the DFKI vehicle. ... 27	

Deliverable 2.3 Report on the Runtime system (public version) Grant Agreement No. 731593

Dreams4Cars Page 7 of 29

List of Tables

Table 1: The MSPRT algorithm. .. 21	

Deliverable 2.3 Report on the Runtime system (public version) Grant Agreement No. 731593

Dreams4Cars Page 8 of 29

1 Objectives of this deliverable
This deliverable is the public description of the implementation of the Artificial Driving Agent (the Codriver) of
Dreams4Cars.

1.1 System-level architecture
The system architecture is presented in section 1 of deliverable D1.3 System Architecture (Release 2). For
readers’ convenience and ease of reference, Figure 1 shows the system-level architecture schematically. The
Codriver is the agent that drives the vehicles at runtime (Figure 1, “Real Driving” box) and which learns new
optimized behaviours in the offline simulation environment (Figure 1, “Simulation” box).

In the following, the agent implementation is described. Another public deliverable (D3.3, due in month 30)
will describe the dreaming mechanisms.

Figure 1: System architecture (from D1.3, Figure 1 – see D1.3 for explanations).

1.2 Agent architecture
The agent architecture is presented in section 2 of deliverable D1.3 System Architecture (Release 2). Figure 2
(from D1.3) is shown here. The architecture has been inspired by several studies concerning the large scale or-
ganization of the human brain, among which [1]–[3].

1.2.1 Sensorimotor loops

The agent is made of 5 loops:

1. The action priming loop (dorsal stream), which converts sensory data into activation patterns of the
motor cortex, encoding the many instantaneous action possibilities in parallel (this deliverable section
2.1);

2. The frontal cortex loop, which implements a logical reasoning system that can steer the agent behav-
iour via the biasing of action selection (this deliverable section 2.2);

3. The action selection loop (basal ganglia), which implements robust and bias-able selection of one ac-
tion (this deliverable section 2.3);

4. The cerebellar loop, which learns forward and inverse models of the vehicle dynamics (this deliverable
section 2.4);

5. The motor output loop, which converts the selected actions into vehicle specific commands via inverse
vehicle dynamics models and enables adaptation and portability to different vehicle types (this deliv-
erable section 3).

Deliverable 2.3 Report on the Runtime system (public version) Grant Agreement No. 731593

Dreams4Cars Page 9 of 29

1.2.2 Simulation and learning mechanisms

In the agent architecture, simulation and learning occur in different places. They are summarized here in order
to frame the agent context and the purposes of the loops, but their actual description will be given in D3.3.

a) The cerebellar loop learns forward and inverse models of the vehicle dynamics. These are used to in-
stantiate embodied simulations for low-level and tactical level controls, and for the synthesis of the
dorsal stream loops that compute the salience function.

b) The frontal loop (at the action-selection step) learns biasing of actions to achieve longer term rewards;
hence learning strategic-level action sequences.

c) The convergence-divergence zones (CDZ) organization of the dorsal stream learns compact represen-
tations of events that may be later used offline to instantiate a first form of episodic simulations.

d) The logical reasoning module in the frontal loop records semantic annotated events that are used to
instantiate a second form of episodic simulations based on recombination of episodes via Genetic Al-
gorithms.

Figure 2: Agent architecture (from D1.3, Figure 2).

Automotive
sensors

Motor Output

Cerebellum

Action Priming
(dorsal stream)

Action Selection
(basal ganglia)

motor
cortex

sensory
cortex

a

b
c

Higher-level
Action biasing

Deliverable 2.3 Report on the Runtime system (public version) Grant Agreement No. 731593

Dreams4Cars Page 10 of 29

2 Implementation

2.1 Dorsal stream
2.1.1 Working principles

The role of the dorsal stream is to recognize the actions latent in the environment and to prepare motor plans
for them. These are encoded with humps of activity in a two-dimensional tensor –corresponding to the motor
cortex in the biological brains [1]– as shown in the example of Figure 3.

The intensity of each hump indicates the strength/urgency of each action request, which is called “salience”.
The position of each hump encodes the lateral and longitudinal control required to initiate the particular ac-
tion (the action plan in its entirety is distributed across the dorsal stream, and in the frontal cortex Logical Rea-
soning Module (LRM) for long-term action sequences).

To further clarify, let us consider the example of Figure 3. At the legal lane-manoeuvring level the agent has 3
possible lane choices {𝑎, 𝑏, 𝑐}. Hence there will be 3 discrete humps in the motor cortex, corresponding to the
control choices of the 3 lanes. At the physical-manoeuvring level, the agent has however much more choices
that still permit to remain (alive) in the road: for example, squeezing between lanes such as, e.g., trajectory 𝑎’.
Hence a broader set of control choices, albeit of lesser value/priority, are also available which are shown with
the lighter shaded area in Figure 3 (trajectory 𝑎’, in which the vehicle travels partly over the lane markings, is
of this type).

When obstacles are present, some of the trajectories determined so far must be excluded. Hence, just like
lanes/road map into active regions of the motor cortex, obstacles map into inhibited regions of the motor cor-
tex (see Figure 3, right).

Figure 3: The dorsal stream computes activation patterns in the artificial agent motor cortex. The intensity
of activation encodes the strength/urgency of corresponding actions, the location encodes longitudinal and
lateral control to select that particular action. The dorsal stream is implemented with streams of two types.
a) Left: parallel streams that compute active regions in the motor cortex, encoding affordable lanes/roads;
b) Right: parallel streams that compute inhibited regions, encoding obstacle and mandatory traffic direc-
tives (traffic lights, stop, etc.).

2.1.2 The salience function

To implement the dorsal stream, one needs thus to implement the computation of active and inhibited regions
(Figure 3). This may be done with either analytical approaches (that however require several simplifications to
be tractable [4]) or by means of deep neural networks that can be trained with different and absolutely general
vehicle and environment models.

In either case the dorsal stream is ultimately a function that, given the vehicle state, vehicle dynamics and en-
vironment, returns the salience function:

 𝑠 = 𝑓(𝑟-, 𝑗-) (1)

which tells the value of a particular instantaneous choice of lateral/longitudinal controls (𝑟-, 𝑗-).

Deliverable 2.3 Report on the Runtime system (public version) Grant Agreement No. 731593

Dreams4Cars Page 11 of 29

The salience function may be discretized with a two-dimensional tensor (a neural layer), where columns and
rows represent discrete values of the lateral and longitudinal controls (𝑟-, 𝑗-).

2.1.3 Formal definition of salience and methods for computation

We give a formal definition of salience, which allows unsupervised learning of the salience function for any ve-
hicle and environment.

Let 𝛾(𝑡) be a trajectory originating from the current vehicle configuration. Let 𝑟(𝑡) and 𝑗(𝑡)	be respectively the
lateral and the longitudinal control1 that produce 𝛾(𝑡). Let 𝑉(𝛾) be a functional operator that returns a scalar
quantity representing the ”value” of trajectory 𝛾(𝑡).

There are many possible definitions for 𝑉 that may work, but in general a proper choice must account for the
magnitude and complexity of the control sequence {𝑟(𝑡), 𝑗(𝑡)}, for physical limits (e.g., tire adherence), for
human driving criteria (e.g., the two-thirds law [5]–[7] and comfortable accelerations, smooth control, etc.)
and for goal related trajectory constraints (e.g., to remain inside a target lane).

- For analytical formulations 𝑉(𝛾) is inversely related to the cost function of the Optimal Control Prob-
lem used to determine 𝛾(𝑡): namely the minimum energy criterion for {𝑟(𝑡), 𝑗(𝑡)} subject to inequali-
ty constraints that express the physical limits and human driving criteria above. In [4] an example of
simplified linearized minimum square jerk Optimal Control Problem is given, where the time-to-lane
crossing is used as a surrogate of 𝑉(𝛾).

- For neural network implementations (our main focus) 𝑉(𝛾) is inversely related to a purposely built loss
function equivalent to the optimal control cost above. The training of the neural network is carried out
offline, via examples produced with the solution of (direct or indirect) Optimal Control Problems that
use the learned vehicle dynamics. This way neural networks that maximize 𝑉can be trained on top of
learned forward models. Embodied simulations that minimize the loss function may also be used as an
alternative approach. This is equivalent to the solution of a direct Optimal Control problem (which in
turn is equivalent to a Reinforcement Learning problem [8]).

The formal definition of salience can thus be given.

Given one legal lane goal 𝑔 (e.g., 𝑔	 = 	𝑎, 𝑏, 𝑐, in Figure 3) the salience related to achieving goal 𝑔	may be de-
fined as follows:

 𝑠5(𝑟-, 𝑗-) = 𝑆𝑢𝑝(𝑉(𝛾)|𝑟(0) = 𝑟-, 𝑗(0) = 𝑗-, 𝛾 ∈ 𝑔) (2)

This definition means that the salience 𝑠 of goal 𝑔 is the supremum2 of the values (𝑉) of all trajectories begin-
ning with control {𝑟(0) 	= 	 𝑟-, 𝑗(0) 	= 	 𝑗-} and satisfying 𝑔	(𝛾	 ∈ 	𝑔).

Implicit in this definition is the fact that 𝛾(𝑡) is subject to the dynamics of the system (𝛾(𝑡) is produced by
{𝑟(𝑡), 𝑗(𝑡)}) and subject to the initial vehicle configuration (𝛾(𝑡) originates for the current vehicle configura-
tion).

The same definition may be re-used for the computation of low-priority actions (physically feasible but unde-
sirable actions such as when 𝑔	means to remain in the road but with violation of lanes, as discussed in section
2.1.1). It is sufficient to replace the notion of lanes with the notion of drivable road surface.

1 In Dreams4Cars 𝑟(𝑡) and 𝑗(𝑡)	are kinematic abstractions of the lateral and longitudinal control; namely the curvature
rate (𝑟) and the longitudinal jerk (𝑗).
2 Other norms might be used instead for 𝑆𝑢𝑝. One should also note that the choice of any norm implicitly means that part
of the decision is anticipated in the dorsal stream as, in this way, the motor cortex encodes the value of the optimal tra-
jectory originating at 𝑟-, 𝑗-. This pre-processing is nonetheless necessary to reduce the dimensionality of the motor cortex.

Deliverable 2.3 Report on the Runtime system (public version) Grant Agreement No. 731593

Dreams4Cars Page 12 of 29

2.1.4 Modular architecture

With the above definition, salience may be computed for different goals independently, and then composed as
follows.

2.1.4.1 Excitatory circuits

A first level of modularity happens because the values of lanes and roads may be computed independently. So,
given a learned vehicle dynamics model –so that 𝛾(𝑡) may be computed as a function of {𝑟(𝑡), 𝑗(𝑡)}– and giv-
en an initial state and an environment, the salience of goal 𝑔, 𝑠5(𝑟-, 𝑗-), is computed by a neural network
trained as in (2). The aggregate salience when several possible goals (individual lanes 𝑎, 𝑏, 𝑐 or the entire 𝑟𝑜𝑎𝑑)
exist can thus be defined as:

 𝑠(𝑟-, 𝑗-) = 𝑀𝑎𝑥(𝑠5(𝑟-, 𝑗-), 𝑔 = 𝑎, 𝑏, 𝑐. . 𝑟𝑜𝑎𝑑) (3)

In a deep learning implementation, hence, a network that can compute the salience for a generic road strip
(be it a lane or an entire road) can thus be used for the computation of the individual 𝑠5, and the aggregated
salience 𝑠, in practice creating the humps of activities of the motor cortex in parallel3.

2.1.4.2 Inhibitory circuits

A second level of modularity happens because the inhibitions of obstacles may also be computed inde-
pendently, and independently from the lane/road activations too. Furthermore, there is a third level of modu-
larity, because inhibitions caused by one obstacle can be computed by repeatedly evaluating inhibitions of dis-
crete future time predicted positions of obstacles4, as shown exemplified in Figure 4 (see also [9]).

Figure 4: Inhibitions caused by obstacles are evaluated as inhibitions for space-time future positions pre-
dicted for obstacle motion [9].

3 Note that the Max operator in (3) is just another form of decision. However, unlike equation (2) this time the individual
𝑠5 may be passed to the action selection algorithm as they are (without composition into one single 𝑠) because they are a
finite number (whereas for (2) curves are ideally infinite in number and reduction of dimensionality is definitely neces-
sary). This is indeed the way it is implemented in Dreams4Cars.
4 The predicted trajectory is necessary and may be obtained via simple mirroring processes or via episodic simulations
(see D1.3, section 3.2.1 or this deliverable section 2.1.5).

Deliverable 2.3 Report on the Runtime system (public version) Grant Agreement No. 731593

Dreams4Cars Page 13 of 29

In order to compute inhibited regions, the value function 𝑉 must be adapted to express collision avoidance
merits of control choices. One possible solution is to compute the value 𝑉 on the complement space-time sets
(space time locations not occupied by obstacle). Another, somehow simplified possibility, is computing optimal
collision trajectories and use the initial controls of them to define a region to be inhibited in the motor cortex.
An example implementation of this method is given in [9]. Inhibited regions are used as multiplicative factors
to reduce to zero the salience as computed by (3). In terms of embodied simulations that means dreaming ac-
tions that cause collision for the purpose of not implementing those actions.

Prediction of obstacle trajectories may be created via episodic simulations with the Dorsal Stream CDZ archi-
tecture as demonstrated in D3.1 section 3 and discussed here in next section.

2.1.5 Convergent-divergent network structure for episodic simulation

Besides the “wake” time use described so far, the dorsal stream has also a role in conceptualizing episodes.
For this, the dorsal stream must have a convergence-divergence architecture (Figure 5, following [3]) as ex-
plained with more details D1.3, section 3.2.1.

Encoding of episodes does not need to be carried out inline. Rather, it may happen via post processing of raw
log data offline. If decoding of episodes is carried out inline, this may be used for “wake” time imagery of
events, such as, for example, predicting the behaviour of other road users (this is not the only way to predict
other road users’ intentions; mirroring process are in general more effective [10]–[12]).

Figure 5: Convergence-divergence zones implementation of the dorsal stream for episodic simulations (see
D1.3, section 3.2.1).

2.2 Biasing loop (frontal cortex loop)
While section 2.1 deals with the generation of safe mid/low-level behaviours (lanes/roads trajectories and ob-
stacle avoidance), to implement more complex symbolic rule-based behaviours such as legal action sequence-
planning (e.g. overtaking), further layers are constructed on top of the dorsal stream that steer the agent low-
level behaviours to produce legal action sequences for longer-term goals.

This high-level loop is specified as a hierarchical Perception-Action (PA) subsumption architecture. As such, it
provides a unified framework for:

a) Semantic annotated event logging.
b) Generation of legal priors for action selection via the basal ganglia (BG) loop.
c) High-level motor babbling/top-down dream instantiation (for the offline system).

Dreams4Cars has thus implemented a unified architecture (the Logical Reasoning Module) with a common
symbolic/sub-symbolic PA interface that operates across the three distinct symbolic/sub-symbolic information-
flow modalities (bottom-up semantic annotation, top-down legal intention biasing, top-down dream instantia-
tion).

Deliverable 2.3 Report on the Runtime system (public version) Grant Agreement No. 731593

Dreams4Cars Page 14 of 29

This deliverable is focused on a) and b) functionalities; the dream-instantiation process itself is treated in de-
liverables D3.3 and only discussed here in so far as it influences the design of the common run-time system
and interfaces.

2.2.1 Biasing principle

The way in which the Logical Reasoning Module (LRM) affects the low-level motor control is by biasing action
selection (see also D1.3, section 2.2) via increasing the weight of the humps of activities that correspond to the
actions of a desirable sequence (biological inspiration in [2]). In addition, the weights of humps of activities
that correspond of undesired actions are conversely reduced, hence opposing illegal/undesired (but physically
possible) actions.

Figure 6: Biasing principle. Suppose the long-term goal is to remain in the lane (a, green shading). Suppose
also that taking exit b is not desired (which means that a secondary priority is to stay in the main
road and, if necessary c has to be preferred to b). Centre: the salience function of goals a and b
are computed (c is neutral and not shown), normalized and used via variable weightings to artifi-
cially increase the strength of hump a and decrease the strength of hump b in the motor cortex
(right).

As an example (see Figure 6), suppose that long term behaviours such as remain in the lane (a), overtake (c)
and take the exit (b) have been formulated by the LRM and that, after the high-level action selection (see sec-
tion 2.3) a is marked as preferred action and b as undesired action. The salience function of goals a and b and c
are computed (c is neutral and not shown) and used to define regions of the original motor cortex to be
strengthened/weakened (Figure 6, right, see section 2.3 for the algorithm). The weights for actions a and b
may be changed (𝑤B > 1, 0 < 	𝑤F < 1), and may be learned for optimizing long-term strategical behaviours.

Note, at this point, that the LRM can only make recommendations (as per the subsumptive `principle of lower-
level veto’), such that the final choice is in charge of the lowest level motor control (dorsal stream). This way,
for example, should the obstacle be so close to completely cancel hump a, the bias a would be ineffective and
the agent would change lane (to avoid the obstacle) whatever the strength of the recommendation from the
LRM.

The final authority is thus always in the responsibility of the dorsal stream physical loops and, when they are
proved to be safe, there is no means by which errors from the LRM can induce collisions because the LRM can
only use the safe low-level building blocks.

Next section 2.2.2 will describe the Logical Reasoning Module and in particular how it instantiates action priors
such as those shown in Figure 6. A further section will then deal with action selection that occurs at two levels:
first at the level of action priors to define weights for different long-term actions, and then at the bottommost
level of fine motor control.

Deliverable 2.3 Report on the Runtime system (public version) Grant Agreement No. 731593

Dreams4Cars Page 15 of 29

2.2.2 The Logical Reasoning Module

The Logical Reasoning Module (LRM) is concerned with the hypothetical reasoning component of the system
architecture in relation to the legal road rules, i.e. the Highway code (HWC). It is implemented so that the
agent conforms to a perception-action subsumption architecture, which requires that a principle of percep-
tion-action bijectivity is enforced within the hierarchy (e.g., see [13]).

The subsumptive Perception Action hierarchy embodied within the LRM consequently implements the symbol-
ic (i.e. high-level representational) component of the Codriver architecture, being responsible for high-level
scene interpretation/annotation and for introducing legal biasing in intention (note that the highway code it-
self does not necessarily identify unique actions within a given road context, but rather gives rise to a degen-
erate equi-legal set of action possibilities).

The LRM acts via a mixture of theorem proving-via-resolution and functional extrapolation in order to apply
the HWC in unfamiliar scenarios, with the former constituting the highest level of PA subsumption. The road
configuration is thus represented within the LRM as instantiated logical variables, irrespective of the LRM’s
operational modality (as indicated, the LRM subsumption framework is constrained to have the capability to
act reversibly, that is to say, in a generative manner via reverse PA logical-variable instantiation, such that hal-
lucinated high-level legal road configurations are spontaneously generated alongside the corresponding legal
intentionality in order to instantiate the offline dreaming process. The latter is an instance of top down explor-
atory PA motor babbling, in which theorem proving-via-resolution is applied to random instantiations of logical
variables in order to establish self-consistent Herbrand (i.e. logically-self consistent) interpretations, i.e. sce-
narios consistent with the legal road protocols).

Thus, while the offline dreaming process is one of top-down symbolic grounding through the full PA subsump-
tion architecture, it is conversely the case that the run-time high-level scene-description and annotation (func-
tion a) may be seen as a process of bottom-up symbolic abstraction. The two processes are hence the precise
inverse of each other in the LRM’s design.

The design specification for the PA subsumption framework embodied by the LRM is therefore as follows.

2.2.2.1 PA Subsumption Design Principle Adopted by the LRM
The criteria for the number of levels in the hierarchy is defined by the twin notions of subsumption and Per-
cept-Action bijection.

Application of the PA bijectivity criterion means that we should, as far as possible, represent only those per-
cepts that distinguish intentional actions on a given layer. This means that each intention must bring about a
perceivable change in such a way that the total set of percepts is minimised with respect to the available ac-
tions (affordances), consistent with the highway code representation of a priori meaningful perceptual objects.
In practical terms, application of this principle means that, for example, it is not possible to have two consecu-
tive legal gaps within a lane, since a ‘legal gap’ in order to exist as a high level percept must be distinguishable
by a correspondingly legally-definable intention (a legal gap is defined as a potential legal place of relative oc-
cupation for the Ego car within a given lane, and as such is not sub-divisible at the highest level of legal inten-
tionality).

The notion of Subsumption in the LRM is thus related to the legal sub-structuring of higher-level intentionality;
in particular, where perceptual targets are fine-grained by sub-intentions, for which the same PA bijectivity
condition also applies.

This principle also extends to levels below that indicated by the HWC; however, the lowest intentional level in-
dicated by the HWC is that of the linearized road metric; this therefore dictates the interface point of the LRM
with the rest of the system (or, equally, this is the symbolic/sub-symbol cut off in the run-time system) as
shown in Figure 7.

From the hierarchical PA perspective, there are thus two distinct symbolic reasoning layers implicit in the
Highway Code (because the HWC explicitly excludes both navigational considerations and motor processes

Deliverable 2.3 Report on the Runtime system (public version) Grant Agreement No. 731593

Dreams4Cars Page 16 of 29

from its remit, which would respectively extend the higher and lower levels of the hierarchy if present). The
two levels are: the discrete symbolic level and the logico-linear metric level, as shown in Figure 7.

Consequently, legal-intention related configurations can only be defined in the above terms; they collectively
represent the high-level semantic annotation (or equivalently, the high-level scene understanding) brought
about by hierarchical PA considerations.

The LRM is therefore architected on two distinct layers (see Figure 7), with a perception/action interface speci-
fied between each level at the appropriate level of symbolic abstraction.

Figure 7: Run-time system PA hierarchy (OC refers to the optimal control trajectories existing at the physical
layer).

Depending on which side of the perception-action divide is being favoured, there are in effect two distinct
forms of subsumption implicit in the highway code in relation to intentions. The first is classical Brookesian task
subsumption, within which fulfilment of a high-level intention (e.g. ‘overtaking’) may depend contextually on
the fulfilment of a lower-level goal (e.g. ‘pulling out into overtaking lane’). The second form of subsumption is
the aforementioned perceptual subsumption, in which different perception-action goals are apparent at dif-
ferent subsumptive levels of representation. For clarity and consistency, it is the latter form which dictates the
design of LRM level and level-interfacing architecture (in a pure PA hierarchy, i.e. one that is grown bottom-up
by motor babbling [13], [14], the two distinct forms of subsumption are exactly equivalent).

However, both aspects of subsumption are implicit in the majority of driving intentions. A task fulfilment crite-
rion (i.e. perceptual target) may thus be defined upon any perceptual level. The notion of subsumption thus
necessarily implies that a perceptual transition at one layer is upwardly transmitted (so that e.g. traversing a
lane-boundary at the metric level necessarily implies a transition of discrete lane markers on the logico-
symbolic level). Conversely, the LRM embodies a ‘principle of lower-level veto’, such that information concern-
ing a failure of attainment of a perceptual goal on a lower level is upwardly transmitted, and the higher-level
goal imperative overruled by the lower level imperative failure (however, the higher-level intention itself re-
mains active).

2.2.2.2 Interlayer Interface Structure of the LRM

The HWC refers to both discrete symbolic entities (cars, lanes, signs, gaps, etc.), as well as linearized-metric en-
tities —i.e. metric entities expressed in terms of distance-to/time-to and distance-from/time-from other enti-
ties described in relation to the Ego Car.

Deliverable 2.3 Report on the Runtime system (public version) Grant Agreement No. 731593

Dreams4Cars Page 17 of 29

At the high-level node (Figure 7), lane-wise road configurations are characterised in the LRM via a logical-list
format: ordered in-lane lists of cars and gaps, with (the equivalent of) predicatized assertions as to which
cars/gaps are legally adjacent to which others.

At the immediately lower level of the LRM, the (symbolic/sub-symbolic) node is characterised by annotated
metric bounding boxes relating to legal transitions produced by a two-stage process, corresponding to the two
stages of subsumption at the apex of the PA hierarchy listed above (the annotation aspect of the metric
bounding boxes thus correlates to their high-level representation, illustrating the progressively grounded na-
ture of symbols generated in a PA hierarchy).

Contextual metric information (distances to and velocities of other cars), received from the agent are hence
converted into a non-metrical list of cars and gaps by means of linear extrapolation according the HWC proto-
cols (i.e. assuming constant speeds and legally-specified reaction times). This list is passed as the second level
in-put to the LRM as a declaratively-enacted script format, from which a set of high-level legal intentions with
uniform priors are generated (these are uniform since road protocols do not distinguish between legal inten-
tional possibilities a priori).

2.2.3 Bottom-up Communication from the Pre-LRM Layer During Runtime (Semantic Annotation
& Logico-Legal Scene Representation)

The bottom-up semantic annotation function of the runtime system thus involves communication from the
Codriver through the various levels of the LRM in the form of abstractions of the perceptual data consistent
with the outlined notion of perceptual subsumption:

Figure 8: Run-time loop; bottom-up semantic annotation

At the symbolic/sub-symbolic interface layer (Linearized Metric Layer in Figure 8), geometric details such as
the exact shape of the lanes are hence discarded, while the topology and linear distance (constituting a higher-
level legal-symbolic parametrisation) is retained. The speed and distance of individual objects in relation to
the Ego car, and road configuration information in the form of lane numbering, width, lane marker types (e.g.
whether lane change is allowed) etc. are passed to the LRM.

The net result of the bottom-up communication of road configuration, after processing by the logical-
reasoning system, is thus a high-level symbolic representation of both the legal status of, and the legal possi-
bilities with respect to, the current road configuration. This hence constitutes a semantic annotation of the
road situation described with respect to a (legal) intentional frame, or equivalently the high-level scene inter-
pretation.

Deliverable 2.3 Report on the Runtime system (public version) Grant Agreement No. 731593

Dreams4Cars Page 18 of 29

2.2.4 Top-down communication from the LRM (Legal intention Grounding)

The logic-symbolic reasoning process, as well as providing the high-level interpretation of the road circum-
stances indicated above, also serves to provide a full set of Herbrand (i.e. logically-self consistent) interpreta-
tions of the future legal action possibilities (for example, whether it is legal to change lane in the current con-
text).

These Herbrand sets are then grounded —i.e. propagated downwards (as instantiated hierarchical variables in
the run-time mode)— through the perception-action subsumption hierarchy so that, at the point of interface
with the Codriver, they manifest as a set of binary saliency indicators attached to legally-designated areas in
the linearized metric space (Figure 9).

Figure 9: Legal-Perceptual Intentional Grounding from the LRM

The communication from the LRM thus take the form of bounding boxes augmented by their discrete legal sa-
liency indicators. These bounding boxes are then used to compute the biasing matrix, described in section
2.2.1.

The bounding boxes, together with their hierarchical intentional annotations, legal saliencies and adjacency re-
lation thus constitute the high-level semantic annotation; i.e. the annotation represents the high-level inter-
pretation of the scene as represented by the end locations of legally-definable actions. The scene annotation
thus simultaneously satisfies the requirements of perception-action bijectivity and legal self-consistency. It is
this bijectivity that allows the bounding box annotation to be directly interpretable at the motor cortex, such
that it can be utilized directly in action selection.

Note that the top-down LRM logical annotation process is exhaustive, such that a complete Herbrand-
interpretation of the scene is generated as the annotation output (this is a natural consequence of the logic
program being applied recursively until an inferential fixed point is arrived at).

This means that, in the event of incomplete input data, the system generates a full range of self-consistent
‘completion’ sets, which are effectively the equivalent of equally-weighted ‘possible worlds’ (in the modal logic
sense) consistent with the input, composed of alternative groundings of predicate variables with the available
constants.

Deliverable 2.3 Report on the Runtime system (public version) Grant Agreement No. 731593

Dreams4Cars Page 19 of 29

2.2.5 Dreaming Initiation via Top-down Communication of Legal-Perceptual Priors (LRM Percept-
Motor Babbling).

Where no input is given to the LRM, there are in effect no grounded logical configuration variables asserted at
the symbolic/sub-symbolic interface. In principle, this allows the LRM to automatically bootstrap the dreaming
process (i.e. initiate high-level percept-action babbling) without any modification of the system’s top-down
logical structure.

That is, exactly the same mechanism for legal biasing using the above protocols can be utilised for dreaming,
since the Herbrand fixed-points in the absence of any assertion as to road configuration (i.e. no assertions re-
lating to either road topology or to vehicle traffic using that topology) are simply a uniform set of possible
worlds consistent with the legal constraints on the road configurations in general (being, in their essence,
simply a set of clauses applied to asserted configuration predicates, the LRM’s logical axioms necessarily have
only a nominal distinction between intentional rules and environmental-consistency rules).

Figure 10: Dream instantiation via the top-down functionality of the LRM

Deliverable 2.3 Report on the Runtime system (public version) Grant Agreement No. 731593

Dreams4Cars Page 20 of 29

2.3 Action selection loops
Action selection in the Codriver system has been organised in a hierarchical fashion (Figure 11). There are two
distinct action selection modules, acting at the symbolic (the LRM) and sub-symbolic (physical) levels of de-
scription. The levels are differentiated firstly by their differing inputs, and secondly by the differing timescales
over which their decisions are made. Each action selection loop is comprised of a multi-hypothesis sequential
probability ratio test algorithm (MSPRT, see section 2.3.1).

The higher-level action selection loop takes the outputs of the logical reasoning module (LRM) as its inputs.
The LRM, in particular, outputs the parameters of “bounding boxes” which detail the locations of legal gaps
and obstacles in a road-centred coordinate system. The high-level action selection module first assigns, at each
time step, scalar weights representing the “desirability” of each of the LRM’s bounding boxes. These weights
are learned, this way enabling the agent to learn long-term strategies (see also D1.3 section 3.2.3).

Once the high-level action-selection loop has concluded its decision-making process, the conclusion can be
passed down to the lower level (Figure 11). The high-level algorithm will have identified one bounding box to
be the preferred target. It may have identified others to be legal but less desirable, and the remaining bound-
ing boxes as being dismissed as possible targets (as explained in Figure 6).

Figure 11: Action selection architecture. Left: Logical Reasoning Module identifies bounding boxes around
legal and illegal locations. High-level Selection loop chooses which of the legal bounding boxes are best and
assigns priority weights. The output of the High-level selection loop biases low level control via biasing ma-
trices and weights. The low-level selection loop combines weights with the motor cortex as in section 2.2.1
and completes the final selection.

2.3.1 The MSPRT Algorithm

Neurally inspired action selection in the agent takes the form of a computational model of the basal ganglia.
We have built on our previous work [15] demonstrating that the basal ganglia could be performing a form of
action selection known as multi-hypothesis sequential probability ratio test (MSPRT). The algorithm sums evi-
dence for each action over time, and finds the log likelihood that each channel is drawn from a distribution
with a higher mean than the other channels. Once the log likelihood crosses a threshold, the action becomes
selected. The threshold has to be tuned such that some predetermined error rate is permitted. Subject to a
few assumptions, the algorithm can be shown to be optimal in decision time, given a particular error rate.

MSPRT has many advantages, with the main benefit being robustness of the decision-making to noisy input da-
ta. Other advantages have been previously outlined in deliverable D1.2 and will therefore not be restated
here.

Deliverable 2.3 Report on the Runtime system (public version) Grant Agreement No. 731593

Dreams4Cars Page 21 of 29

The standard MSPRT algorithm has been extended to function well in nonstationary environments, i.e. envi-
ronments in which the statistical parameters of the input data are not constant [16]. The non-stationary
MSPRT deals with the changing input statistics by forgetting inputs that occurred some time ago. The evidence
for a particular decision is therefore accrued only over a time window of finite size. The size of this time win-
dow is variable, depending on which level of the subsumption architecture the MSPRT is working: higher level
decisions such as which manoeuvre to perform next will need to accumulate evidence over ~1-10 s time scale,
whereas fine motor control and path planning decisions will need to accumulate evidence over much shorter
~0.1-1 s time scales.

The MSPRT implementation is described in Table 1. The fundamental step is 4: the computation of the log-
likelihood as follows:

 𝐿 = −𝑔 ∙ 𝑚𝑐 + 𝐿𝑜𝑔(𝑇𝑜𝑡𝑎𝑙(𝐸𝑥𝑝(𝑔 ∙ 𝑚𝑐))) (4)

where 𝑚𝑐 is the accrued motor cortex (step 3), 𝑔 is a gain tensor (that is used to model biasing) and 𝑔 ∙ 𝑚𝑐 is
the elementwise multiplication of the two.

The term 𝐿𝑜𝑔(𝑇𝑜𝑡𝑎𝑙(𝐸𝑥𝑝(𝑔 ∙ 𝑚𝑐))) models the competition between channels (𝐸𝑥𝑝 is computed element
wise).

If the channel with the minimum 𝐿 (the log likelihood) is below the specified threshold, the channel location in
the motor cortex is selected and returned. Else, if the threshold is not reached within the deadline, the best
candidate is returned.

The implementation of the algorithm is quite simple. It is however worth noting that it can be parallelized.
Given tensors 𝑔 ∙ 𝑚𝑐, L is actually the logarithm of the SoftMax function of 𝑔 ∙ 𝑚𝑐.

Table 1: The MSPRT algorithm.	

MSPRT Algorithm, Requires: 𝑔𝑎𝑖𝑛, 𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑, 𝑐𝑢𝑟𝑟𝑒𝑛𝑡_𝑚𝑜𝑡𝑜𝑐𝑜𝑟𝑡𝑒𝑥, 𝑑𝑒𝑎𝑑𝑙𝑖𝑛𝑒, 𝑓𝑜𝑟𝑔𝑒𝑡𝑡𝑖𝑚𝑒
1:	Start	with	empty	𝑎𝑐𝑐𝑢𝑚𝑢𝑙𝑎𝑡𝑒𝑑_𝑚𝑜𝑡𝑜𝑟𝑐𝑜𝑟𝑡𝑒𝑥
2: 𝑎𝑐𝑐𝑢𝑚𝑢𝑙𝑎𝑡𝑒𝑑_𝑚𝑜𝑡𝑜𝑟𝑐𝑜𝑟𝑡𝑒𝑥 ← 𝐀𝐩𝐩𝐞𝐧𝐝(𝑐𝑢𝑟𝑟𝑒𝑛𝑡_𝑚𝑜𝑡𝑜𝑟𝑐𝑜𝑟𝑡𝑒𝑥)
3: 𝑎𝑐𝑐_𝑚𝑐 ← Total(𝑎𝑐𝑐𝑢𝑚𝑢𝑙𝑎𝑡𝑒𝑑_𝑚𝑜𝑡𝑜𝑟𝑐𝑜𝑟𝑡𝑒𝑥)
4: 𝑙𝑜𝑔_𝑙𝑖𝑘𝑒𝑙𝑖ℎ𝑜𝑜𝑑	 ← −𝑔𝑎𝑖𝑛	𝑎𝑐𝑐_𝑚𝑐 + 𝐋𝐨𝐠(𝐓𝐨𝐭𝐚𝐥(𝐄𝐱𝐩(𝑔𝑎𝑖𝑛	𝑎𝑐𝑐_𝑚𝑐)))
5: 𝑚 ← 𝐌𝐢𝐧(𝑙𝑜𝑔_𝑙𝑖𝑘𝑒𝑙𝑖ℎ𝑜𝑜𝑑)
6: 𝑖, 𝑗 ← 𝑎𝑟𝑔𝑚𝑖𝑛(𝑙𝑜𝑔_𝑙𝑖𝑘𝑒𝑙𝑖ℎ𝑜𝑜𝑑) // position of the minimum
7: 𝐈𝐟	𝑚 < 𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑 Then
 forget frames before 𝑓𝑜𝑟𝑔𝑒𝑡𝑡𝑖𝑚𝑒	in	the	𝑎𝑐𝑐𝑢𝑚𝑢𝑙𝑎𝑡𝑒𝑑_𝑚𝑜𝑡𝑜𝑟𝑐𝑜𝑟𝑡𝑒𝑥
 Return 𝑖, 𝑗	𝑎𝑛𝑑	𝑚	// selection before deadline
8: 𝐈𝐟	𝑑𝑒𝑎𝑑𝑙𝑖𝑛𝑒	is	elapsed Then
 reset	the	𝑎𝑐𝑐𝑢𝑚𝑢𝑙𝑎𝑡𝑒𝑑_𝑚𝑜𝑡𝑜𝑟𝑐𝑜𝑟𝑡𝑒𝑥	
 Return 𝑖, 𝑗	and	m	// selection after deadline

Deliverable 2.3 Report on the Runtime system (public version) Grant Agreement No. 731593

Dreams4Cars Page 22 of 29

2.4 Cerebellar stream
The cerebellar loop is used both inline (“wake” state) and offline (“dream state”). The inline use is for state es-
timation/control and failure detection (see section 3 of this document). The offline use is for embodied simula-
tions (e.g., D1.3 section 6).

In both cases, everything relies on the learning of forward/inverse models, which has been presented in D3.1,
where section 6.1 deals with the learning of forward models with neural networks and section 6.2 with state
space and analytical-parametric models. A comparison between these approaches is going to be submitted as
a journal publication [17].

The software implementation for inline use simply requires loading and running the neural networks models
(this deliverable section 3), which in turn uses a deep learning foundation (in our case MXNet).

The software implementation for the offline use (as it was for the dorsal stream) requires, in addition, the abil-
ity to train neural networks, which is achieved by means of a number of command scripts (either Python/Keras
or Wolfram Mathematica as front ends and MXNet as backend).

Deliverable 2.3 Report on the Runtime system (public version) Grant Agreement No. 731593

Dreams4Cars Page 23 of 29

3 Integration of the agent in real and virtual vehicles

3.1 Vehicle control paradigm
The control scheme is important for concretely benefitting of the Codriver abilities. In particular, it is the key
for interoperability (the Codriver being easily adapted to different vehicles) and for adaptation to changes in
vehicle dynamics (the Codriver adapting to either failures or environmental changes).

3.1.1 Traditional approaches

Traditional vehicle control is usually based on two possible approaches: 1) trajectories are planned in the car-
tesian space and then tracked, e.g., using Model Predictive Control; 2) trajectories are planned directly in the
actuators space.

The former approach, separating trajectory planning from trajectory tracking leaves to the trajectory tracking
level the arbitrary decision of how aggressively corrections of deviations have to be. In this scheme, if a devia-
tion from the planned trajectory occasionally occurs, the tracker will try (more or less aggressively) to return to
the original trajectory, even if the deviation is irrelevant for the goal at hand. The “minimum intervention prin-
ciple” [18] states that only deviations that affects the final goal should be corrected. This is clearly possible on-
ly if the trajectory planning and the trajectory execution levels are not disjoint. With planning and tracking as
separate modules, aggressive corrections that are in facts unnecessary, may arise and may have the drawback
of using resources, in particular tire friction, that are unnecessarily close to the manoeuvrability limits (as an
example, imagine a human driver that realizes being slight off-centre in one lane; on a slippery road, an ag-
gressive correction to return in the centre might cause slippage; a human instead would evaluate the mini-
mum amount of correction to manoeuvre for the next curves).

The latter approach, conversely, aims to provide the exact command to the actuators (steering wheel angle,
engine and brake actuation) without stepping in the intermediate level of a cartesian trajectory (i.e., trajecto-
ries are planned straight in the actuator space, see one example in our previous work [19]). The main draw-
back is that an accurate model of the vehicle is necessary. This model is often a parametric analytical model
(one example of optimal feedback control based on learned dynamics is given in [20]). The model may be inac-
curate either because the parameters are not perfectly known and/or vary in operation and because the mod-
el includes many simplifications, the effect of which may be not perfectly known in all the situations. Further-
more, even if a detailed (necessarily complex) model were available, planning optimal control with such non-
linear complex models may be very demanding from the computational point of view, and may require itera-
tive algorithms (and the latter are disliked by the automotive industry unless a formal proof of convergence in
the available times is given, which is difficult to provide).

3.1.2 Inverse model approach

The control approach used in Dreams4Cars is based on two levels (execution of kinematic trajectories) but, un-
like 1), the two levels are tightly coupled. With reference to Figure 2, motor control corresponds to the blue
arrow labelled “motor output”, where movement is initially conceived at some level of abstraction (i.e., ab-
stractions of longitudinal and lateral control in the motor cortex) and then converted into individual muscle
commands in the cerebellum/brainstem and spinal cord.

Such control approach has been anticipated and tested in D3.1 (D3.1 section 6.4.1 and D3.1 Figure 35) and
D4.1, section 3. Figure 12 shows the control scheme (at a level more general than the cited deliverables). The
motor plans instantiated in the dorsal stream are encoded in the abstract longitudinal/lateral control space of
the motor cortex (longitudinal jerk and curvature rate). They are converted into the command of the actuators
of a specific vehicle by means of inverse models of the vehicle dynamics, which are learned with methods
mentioned in section 2.4. Updates to motor plans are continually produced by the Codriver (hence there are
no two nested trajectory and tracking loops). In case of failure of the Codriver, the last trajectory may be used
for a while, hence driving the host vehicle along the latest plan as explained in D4.1, section 3. However, in
normal operation the Codriver updates motor plans at a rate that is similar to the inverse model rate (in our
implementation the Codriver rate is 50 ms; the inverse model up-samples the Codriver output to 10 ms for the
generation of the commands sent to the actuators).

Deliverable 2.3 Report on the Runtime system (public version) Grant Agreement No. 731593

Dreams4Cars Page 24 of 29

With this scheme the minimum intervention principle is satisfied, because deviations are corrected by the Co-
driver itself, leading to the generation of an optimal new trajectory for the current Codriver goal.

The learning of inverse models via neural networks may be, with care, quite accurate and even more accurate
than traditional parametric analytical models [17].

Any inaccuracy of the inverse model (together with environmental disturbances) may in turn cause deviations.
The stability of the control loop of Figure 12 has thus been studied in [21], concluding that there are very large
margins of stability even if the inverse model is not adapted.

Finally, the actual stochastic vehicle forward dynamics may be learned in parallel with the inverse model (D3.1
section 6.1) and used to train the dorsal stream loops (D2.1 sections 3.3 and 3.4 and D3.1 section 6.4). This
way the salience instantiated in the motor cortex will take into consideration the forward dynamics of the ve-
hicle/context. For example, with reference to Figure 3, left, in slippery conditions the relevant forward model
would produce a much weaker peak for the option of turning right (b). Hence, a much stronger bias (i.e., will-
ingness to turn) is required if the road is slippery. This means the agent would normally give up turning in close
curves if conditions are slippery. On snow the peak would probably disappear leading the agent not to consid-
er at all the possibility of sharp curves.

Figure 12: Inverse model approach for vehicle control.

3.1.3 Software (functional) implementation

The software implementation is schematically shown in Figure 13. It was significantly revised from the original
implementation in previous AdaptIVe project.

In Dreams4Cars, the Codriver can be adapted/customized to different environments by using a configuration
file (CONF.JSON in Figure 13). Also, sharing the Codriver among partners was eased by the creation of a library
(CODRIVER LIBRARY) which wraps the Codriver software modules acting as a unique interface, in a way that
any modification of the software is transparent to the users.

The CODRIVER LIBRARY allows the user to run the Codriver either locally (in the same CPU) or remotely (in a
different dedicated CPU) via UDP communications, depending on how the software is initialised.

When selecting the remote functioning, the red blocks of Figure 13 are enabled and the UDP communication is
established between the library (which acts as a client in remote mode) and the server. This operating mode is
especially suitable for Software in the Loop, Hardware in the Loop prototyping and for the CRF Vehicle (see
D5.1). On top of the server architecture there is the SERVER MANAGER which takes care of instantiating the
communication parameters as specified in the configuration file such as IP address and port for the applica-
tion.

Deliverable 2.3 Report on the Runtime system (public version) Grant Agreement No. 731593

Dreams4Cars Page 25 of 29

The local operating mode (light blue boxes), conversely, is used for simulation with Model in the Loop (Car-
Maker MIL and OpenDS) and for the DFKI Vehicle. Because of the lack of UDP and hence lack of occasional
packed losses, this operation modality is also perfectly reproducible.

In both operating modes the CODRIVER AGENT/MANAGER are the same. The MANAGER is a wrapper, which
provides the initialisation of the agent parameters as specified in the user-customisable configuration file.

In addition, the MANAGER loads the appropriate forward/inverse models that are situation-specific. This way
switching between models is possible. Interoperability and forward/inverse model adaptation are thus
achieved by selecting the suitable parameters (including the indication of the forward/inverse models to use)
in the configuration file CONF.JSON.

Figure 13: Functional diagram of software implementation.

3.2 Interoperability of high-level behaviours in vehicles of different types
As was described, the transportability of the Codriver in different testing environments (MIL, SIL, HIL, Proto-
type Vehicle), and on different vehicle models (Jeep Renegade and MIA) is given by the fact that the abstrac-
tion level used by the Codriver (coordinates, speed, etc.) is independent on the vehicle and sensor set. Also,
common interfaces with the rest of the vehicle (scenario and manoeuvre messages) allow easy transportation
among vehicles and simulation environments. The part of the system that depends on the specific vehicle, that
is the preparation of sensor data, and chassis-level vehicle control, is executed by other modules outside of the
Codriver, that interface the Codriver on the specific vehicle.

In particular, interoperability between vehicles of different types is obtained with the use of the appropriate
inverse/forward models learned from the vehicle recorded behaviours. These models may also be changed (if
necessary) and finely tuned when environmental conditions vary.

Deliverable 2.3 Report on the Runtime system (public version) Grant Agreement No. 731593

Dreams4Cars Page 26 of 29

Two relevant aspects are involved here:

1) The learned forward model is used when training the dorsal stream computation of the salience. This
way the same trajectory looks more or less affordable depending on the driven vehicle. There hence is
a first form of adaptation to the vehicle.

2) The learned inverse model is used to map the Codriver planned control from the abstract generic car-
tesian space into the actual inputs for the actuators. There hence is a second form of adaptation to the
vehicle.

The actual implementation of the control scheme in Figure 12 may vary, depending on which processing unit is
used for running the inverse model.

3.2.1 CRF vehicle

In the CRF vehicle there are two processing units (D4.1), which are shown in Figure 14. The Codriver unit,
which may either be the NVIDIA DRIVE PX2 or the VBOX PC (see D4.1), runs at 50 ms cycle time. The central
unit, which is the dSPACE MicroAutoBox (with real-time OS), runs at 10 ms and, among the others, drives the
actuators.

In the CRF vehicle the inverse model is implemented in the Codriver unit, and hence runs at 50 ms. Installing
the inverse model in the MicroAutoBox would be very problematic, because of the lack of reliable deep learn-
ing frameworks that are necessary to run the inverse model neural network.

At every cycle (every 50 ms) the output of the Codriver Agent is given by motor control primitives 𝑗(𝑡 − 𝑡-)
and 𝑟(𝑡 − 𝑡-) as functions of the elapsed time 𝑡 − 𝑡-. These represent the longitudinal and lateral control at
the abstraction level of the dorsal stream (longitudinal jerk j and steering rate r). The future curvature
𝜅(𝑡 − 𝑡-) and acceleration 𝑎(𝑡 − 𝑡-) are then also obtained. This may be carried out either by matching the
actual initial curvature and acceleration of the vehicle, or, by means of an integrator block that may correct
drifts in the executed manoeuvre.

The curvature and acceleration functions are then sampled at future times 𝑘	Δ𝑇 − 𝑡- and used, with the cur-
rent state 𝑥(𝑡-) to compute the steering angle and engine/brake commands. These are passed to the Micro-
AutoBox unit, where they are up-sampled, and used to feed the actuators taking the sample that corresponds
to the time elapsed from 𝑡- and the current cycle. This way, delays in the Codriver unit loop are compensated
and, in case the Codriver unit fails to update the motor plans, the last valid plan is used, which allows some re-
silience against failures of the Codriver unit.

Albeit not mentioned here, the OpenDS and CarMaker simulation environments follow a very similar arrange-
ment.

Figure 14: Inverse model implementation in the CRF vehicle.

Deliverable 2.3 Report on the Runtime system (public version) Grant Agreement No. 731593

Dreams4Cars Page 27 of 29

3.2.2 DFKI vehicle

In the DFKI vehicle the Codriver unit is the NVIDIA DRIVE PX2 (see D4.1), which also runs at 50 ms cycle time.
The rest of the vehicle is managed in a ROS environment which has several asynchronous processes.

In this case the inverse model is implemented in the ROS environment. Hence the Codriver unit sends the cur-
vature 𝜅(𝑡 − 𝑡-) and acceleration 𝑎(𝑡 − 𝑡-) functions to ROS. They are sampled and used with the current
state 𝑥(𝑡) to compute the steering angle and engine/brake commands. This process may be carried out when-
ever necessary and may use a fresh 𝑥(𝑡) every time.

With the following arrangement, it is easy to switch among different inverse models, as well as implementing
failure recovery strategies.

Figure 15: Inverse model implementation in the DFKI vehicle.

Deliverable 2.3 Report on the Runtime system (public version) Grant Agreement No. 731593

Dreams4Cars Page 28 of 29

4 Bibliographical References
[1] P. Cisek, «Cortical mechanisms of action selection: the affordance competition hypothesis», Philos.

Trans. R. Soc. B Biol. Sci., vol. 362, n. 1485, pagg. 1585–1599, set. 2007.

[2] G. Pezzulo e P. Cisek, «Navigating the Affordance Landscape: Feedback Control as a Process Model of
Behavior and Cognition», Trends Cogn. Sci., vol. 20, n. 6, pagg. 414–424, giu. 2016.

[3] K. Meyer e A. Damasio, «Convergence and divergence in a neural architecture for recognition and
memory», Trends Neurosci., vol. 32, n. 7, pagg. 376–382, lug. 2009.

[4] M. Da Lio, G. P. Rosati Papini, e R. Donà, «Hierarchical Robust Path Control for Automat-ed Driving in
Roads Structured with Lanes», vol. Manuscript in Preparation, 2018.

[5] P. Viviani e T. Flash, «Minimum-jerk, two-thirds power law, and isochrony: converging approaches to
movement planning.», J. Exp. Psychol. Hum. Percept. Perform., vol. 21, n. 1, pagg. 32–53, mar. 1995.

[6] P. Bosetti, M. Da Lio, e A. Saroldi, «On the Human Control of Vehicles : an Experimental Study of Accel-
eration», Eur. Transp. Res. Rev., 2013.

[7] P. Bosetti, M. Da Lio, e A. Saroldi, «On Curve Negotiation: From Driver Support to Automation», IEEE
Trans. Intell. Transp. Syst., vol. in press, 2015.

[8] R. S. Sutton, A. G. Barto, e R. J. Williams, «Reinforcement learning is direct adaptive optimal control»,
IEEE Control Syst. Mag., vol. 12, n. 2, pagg. 19–22, 1992.

[9] M. Da Lio, A. Plebe, e D. Bortoluzzi, «On Reliable Neural Network Sensorimotor Control in Autonomous
Vehicles», IEEE Trans. Intell. Transp. Syst., pag. submitted.

[10] M. Da Lio et al., «Artificial Co-Drivers as a Universal Enabling Technology for Future Intelligent Vehicles
and Transportation Systems», IEEE Trans. Intell. Transp. Syst., vol. 16, n. 1, pagg. 244–263, 2015.

[11] M. Da Lio, A. Mazzalai, e M. Darin, «Cooperative Intersection Support System Based on Mirroring Mech-
anisms Enacted by Bio-Inspired Layered Control Architecture», IEEE Trans. Intell. Transp. Syst., vol. sub-
mitted.

[12] M. Da Lio, A. Mazzalai, K. Gurney, e A. Saroldi, «Biologically guided driver modeling: The stop behavior of
human car drivers», IEEE Trans. Intell. Transp. Syst., vol. 19, n. 8, pagg. 2454–2469, 2018.

[13] D. Windridge, «Emergent Intentionality in Perception-Action Subsumption Hierarchies», Front. Robot.
AI, vol. 4, ago. 2017.

[14] D. Windridge e S. Thill, «Representational fluidity in embodied (artificial) cognition», Biosystems, vol.
172, pagg. 9–17, ott. 2018.

[15] R. Bogacz e K. Gurney, «The basal ganglia and cortex implement optimal decision making between alter-
native actions», Neural Comput., vol. 19, n. 2, pagg. 442–477, 2007.

[16] L. F. Nunes e K. Gurney, «Multi-alternative decision-making with non-stationary inputs», Open Sci., vol.
3, n. 8, pag. 160376, ago. 2016.

[17] S. James, A. Sean, e D. L. Mauro, «Longitudinal Vehicle Dynamics: A Comparison of Linear State-space,
Nonlinear Physical and Neural Network Models», Be Submitt.

[18] E. Todorov e M. I. Jordan, «A Minimal Intervention Principle for Coordinated Movement», Adv. Neural
Inf. Process. Syst., vol. 15, pagg. 27–34, 2003.

[19] E. Bertolazzi, F. Biral, M. Da Lio, A. Saroldi, e F. Tango, «Supporting drivers in keeping safe speed and

Deliverable 2.3 Report on the Runtime system (public version) Grant Agreement No. 731593

Dreams4Cars Page 29 of 29

safe distance: The SASPENCE subproject within the European framework programme 6 integrating pro-
ject PReVENT», IEEE Trans. Intell. Transp. Syst., vol. 11, n. 3, pagg. 525–538, 2010.

[20] D. Mitrovic, S. Klanke, e S. Vijayakumar, «Adaptive Optimal Feedback Control with Learned Internal Dy-
namics Models», Robotics, vol. 264, pagg. 65–84, 2010.

[21] R. Donà, G. P. Rosati Papini, M. Da Lio, e L. Zaccarian, «On the Robustness and Stability of Hierarchical
Vehicle Lateral Control with Inverse/Forward Dynamics Quasi-Cancellation», IEEE Trans. Intell. Transp.
Syst.

