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Executive Summary 

This deliverable represents the main research findings of Dreams4Cars, i.e., a process for bootstrapping sen-
sorimotor systems based on learning models of the wold (both models that predict the effect of actions and 
models that predict events) that are then manipulated offline to synthetize action strategies (Figure 1).  

This process is described in section 3. It starts with the supervised learning of vehicle dynamics “forward” (or 
predictive) models from data. We here introduce an efficient architecture for the networks that makes the mod-
els explainable (thus solving the black box issue that would otherwise prevent adoption of neural network for 
motion control due to liability issues and the ISO 26262 mandatory requirement). We show how this architecture 
allows disentangling independent causes (weak superposition effect) and how it is very similar to cerebellar 
filters. Stochastic forward models are then introduced resorting to the bootstrapping technique which does not 
make any assumption about the distributions and correlations of data. Progressive refinement of models via 
lifelong learning (e.g., learning nonlinearities on top of linear models) is also explained. A particular form of 
overfitting (high-frequency spectral overfitting) is studied and methods of regularization are provided. Statistical 
methods to compare predictions of learned forward models are finally introduced. 

In section 3.2 the learning of inverse models is introduced showing two possible approaches: from data (super-
vised learning by swapping input and output) and via the first form of episodic simulations (unsupervised learn-
ing). We show that the latter is generally more robust, and it may be used to train inverse model for robust 
predictive control (an aspect that is still a research topic for traditional MPC). 

In section 3.3 we step to a higher level of motor control introducing the notion “short-cuts” in the simulation 
paths. This is a form of learning neural network abstractions that allows making prediction of action outcomes 
without needing to simulate the entire action in details. It can be regarded as the transition between embodied 
(detailed) and episodic (abstract) simulations. This in turns allows to progressively build more and more abstract, 
fast and efficient simulation blocks for simulations of further higher levels, ending with the tools for accelerating 
Reinforcement Learning. 

We finally end up with the learning of action values, i.e., the salience stored in the “motor cortex” and we show 
how it is functionally equivalent to the notion of reward in Reinforcement Learning, except that it is obtained 
via a synthesis process that manipulates learned models of the world rather than via trial and error exploration 
(which is the RL way).  

In section 4, Reinforcement learning applications are introduced. The choice of safe speed (as the most im-
portant behavioural choice for safe driving) is studied in details for the case of pedestrians possibly crossing the 
road; obtaining a network that interacts with the lower-levels of the agent via setting recommended safe speed. 
Open issues related to RL are also discussed (RL in itself is not the research focus of Dreams4Cars). 

We introduce also possible research lines for the future in section 5; in particular how the sensorimotor system 
here developed can be integrated with self-organizing perception systems to form a whole. We take inspiration 
from the CDZ hypothesis of Damasio and show some proof of concept with implementations based on Varia-
tional Autoencoders. 

Across all the document we make as many efforts as possible to compare the methods here developed with 
more or less traditional alternatives, and point many advantages: so, section 3.1.5 evaluates the performance 
of forward models networks, section 3.1.9 deals with statistical comparisons of forward models, section 3.3.4 
compare stochastic motor models in the literature, section 3.3.6 compares to Optimal Control, section 3.3.7.2 
makes an internal comparison between the core bootstrapping approach of section 3 and Reinforcement Learn-
ing. Section 4 also presents some qualitative comparisons of the RL implementation within similar ones in the 
literature. Worth to be noted is the fact that here RL creates networks that are built on top of an agent that can 
operate on the real world, whereas the literature examples are for simulated worlds and are not directly trans-
ferable to the real world (transfer here is permitted by acting with high-level directives on an agent that can 
already operate on the real world by itself) 

 


