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Executive Summary 

This is the open (public) version of deliverable D3.2 Simulation system (release 2). We provide a short description 
of the main findings and conclusions of WP3 and some parts of D3.2 itself. 

There are other parts of D3.2 that are not published because of two main reasons: a) they are suited for possible 
technical-economical exploitations and/or b) they are still confidential in order to avoid anticipated disclosure 
of the contents of future publications. 

We provide the full Table of Contents of D3.2 (with omitted sections) in order to promote the contents to raise 
interests for possible adopters in case of technical-economical exploitations. 

The complete list of references is also included. 
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1 Summary of findings 
Deliverable D3.2 (Simulation system) represents the main research findings of Dreams4car, describing a process 
for bootstrapping sensorimotor systems based on learning models of the wold (both models that predict the 
effect of actions and models that predict events) that are then manipulated offline to synthetize action strategies 
(see Figure 1).  

This process is described in section 3. It starts with the supervised learning of vehicle dynamics “forward” (or 
predictive models) from data. We here introduce an efficient architecture for the networks that makes the mod-
els explainable (thus solving the black box issue that would otherwise prevent adoption of neural network for 
motion control due to liability issues and the ISO 26262 mandatory requirement). We show how this architecture 
allows disentangling independent causes (weak superposition effect) and how it is very similar to cerebellar 
filters. Stochastic forward models are then introduced resorting to the bootstrapping technique which does not 
make any assumption about the distributions and correlations of data. Progressive refinement of models via 
lifelong learning (e.g., learning nonlinearities on top of linear models) is also explained. A particular form of 
overfitting (high-frequency spectral overfitting) is studied and methods of regularization are provided. Statistical 
methods to compare predictions of learned forward models are finally introduced. This section is partly included 
in the public version D3.3 of the deliverable. 

In section 3.2 the learning of inverse models is introduced showing two possible approaches: from data (super-
vised learning by swapping input and output) and via the first form of episodic simulations (unsupervised learn-
ing). We show that the latter is generally more robust, and it may be used to train inverse model for robust 
predictive control (an aspect that is still a research topic for traditional MPC). 

In section 3.3 we step to a higher level of motor control introducing the notion “short-cuts” in the simulation 
paths. This is a form of learning neural network abstractions that allows making prediction of action outcomes 
without needing to simulate the entire action in details. It can be regarded as the transition between embodied 
(detailed) and episodic (abstract) simulations. This in turns allows to progressively build more and more abstract, 
fast and efficient simulation blocks for simulations of further higher levels, ending with the tools for accelerating 
Reinforcement Learning. 

We finally end up with the learning of action values, i.e., the salience stored in the “motor cortex” and we show 
how it is functionally equivalent to the notion of reward in Reinforcement Learning, except that it is obtained 
via a synthesis process that manipulates learned models of the world, rather than via trial and error exploration 
(the latter is RL).  

In section 4 Reinforcement Learning applications are introduced. The choice of safe speed (as the most im-
portant behavioural choice for safe driving) in studied in details for the case of pedestrians possibly crossing the 
road, obtaining a network that interacts with the lower-levels of the agent via setting recommended safe speed. 
Open issues related to RL are also discussed (RL in itself is not the research focus of Dreams4Cars). 

We introduce also possible research lines for the future in section 5; in particular how the sensorimotor system 
here developed can be integrated with self-organizing perception system to form a whole. We take inspiration 
from the CDZ hypothesis of Damasio and show some proof of concept with implementations based on Varia-
tional Autoencoders. This part is included in the deliverable as already published. 

Across all the document we make as many efforts as possible to compare the methods here with more or less 
traditional alternatives and point many advantages: so, section 3.1.5 evaluates the performance of forward 
models networks, section 3.1.9 deals with statistical comparisons of forward models, section 3.3.4 compare 
stochastic motor models to the ones in the literature, section 3.3.6 compares to Optimal Control, section 3.3.7.2 
makes an internal comparison between the core bootstrapping approach of section 3 and Reinforcement Learn-
ing. Section 4 also presents some qualitative comparisons of the RL implementation within similar ones in the 
literature. Worth to be noted is the fact that here RL creates networks that are built on top of an agent the can 
operate on the real world, whereas the literature examples are for simulated worlds and not directly transfera-
ble to the real world (transfer here is permitted by acting with high-level directives on an agent that can operate 
on the real world by itself). 
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1.1 Objectives of D3.2 
The two primary goals of the “dreaming” machinery are creating useful simulation scenarios (section 2) and 
learning from the simulations (sections 3 and 4). 

This deliverable describes the methods that have been developed by Dreams4Cars (D4C). Together with D2.2 
(the Agent implementation with reconfiguration abilities) and D1.2 (the system architecture) constitutes the 
main findings of Dreams4Cars.  

This deliverable presents an organized description of the methods that have been developed. A limited number 
of examples are given in this document in order not to disturb the main narrative line (when necessary we will 
point to examples given in version 1 of this deliverable, in published papers and/or we will point examples in 
deliverable D5.3; this is similar to the organization given to D2.2 for WP2).  

More examples with the quantification of the improvements that D4C technology produce for automated driv-
ing will be given in D5.3, D1.4 and D5.4 instead. 

1.2 Embodied and episodic simulations 
One of the main findings of D3.1 was the introduction of two distinct forms of simulations termed as embodied 
and episodic simulations. The existence of two forms is supported by psychological, behavioural and biological 
findings [1]. In brief embodied simulations are associated with fast, unconscious, rigid, short processing; while 
episodic simulations are related to controlled, flexible and longer-term processing [1].  

The development and learning of embodied and episodic simulations will involve diverse learning mechanisms 
and while interplay between the two is an open question it is possible to outline some suggestions on how this 
is achieved in the human brain. In the simplest case, simulation can be described as covert actions generating 
predictions of the sensory effects if those actions had they been executed. The predicted sensory effects (stim-
ulus S) should then be able to generate new possible covert actions (response R) and so on. Thus, there is a need 
to learn both the association between S and R (so called procedural predictions) and the association between R 
and S (so called declarative predictions) [2]. While procedural predictions can be learnt by different learning 
systems in the brain depending on the level of granularity of the prediction [3], perhaps the most common 
example would be supervised learning in the cerebellum or reinforcement learning by the basal ganglia [2]. 
Declarative predictions on the other hand seems mainly related to different types of cortical learning pathways 
(generally thought of as being instances of unsupervised learning). Doya [4] provides an accessible overview of 
how the common types of learning in artificial neural networks relates to learning in different parts of the brain.  

Since our agent (D2.2) includes loops that learns forward models (cerebellum, D2.2 section 2.4) and mimic back 
signalling in the frontal cortex (the subsumption architecture, D2.2 section 2.2.5) and in the dorsal stream (the 
convergent divergent structure, D2.2 section 2.1.5) we can exploit these artificial structures to implement the 
two forms (declarative and procedural) of simulation and learning.  

There are two different approaches: 

1) Bottom up approach. Learning proceeds bottom up (see section 3 and Figure 1), starting with the learn-
ing of forward models and gradually bootstrapping more and more complex motor abilities (motor prim-
itive units, primitive chains and action sequences). Simple episodes may be used/created to set the 
training goals for each level of competence without needing the entire simulation environment (OpenDS 
is not necessary except, in some cases, for the very last level). 

2) Top down approach. Learning proceeds via instantiation of putative goals in the Logical Reasoning Mod-
ule and produces the biases of the high-level action selection via reinforcement learning. The whole 
simulation environment is required to insatiate a wide variety of episodes (section 4). 

In any case there is some overlap between the two approaches, because 1) can be extended to (very effectively) 
cover situations that could be generated with 2) top down.  
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2 Generation of episodes 
This section deals with the problem of how to create useful situations for dreaming.  

2.1 Level specific episodes 
Within a subsumption architecture, sensorimotor abilities are organized in levels of increasing complexity (see 
Figure 1, section 3).  

Every level, except level 1 (Figure 1), may be engaged in offline simulations. For example, at level 2 a sequence 
of hypothetical motor commands may be used to predict the consequences of those commands (direct prob-
lem). Such predictions use the forward model learned at level 1. In turn, this prediction ability may be used to 
solve inverse problems too: for example, finding the motor commands that produce a desired trajectory (section 
0). Similar considerations can be developed for each level. For example, at level 3 one might conceive the prob-
lem of finding convenient trajectories to reach hypothetical target states (a level 3 inverse problem) and using 
level 2 findings to solve it.  

We will deal in details with the solution of these inverse problems in sections 3 and 4 (as they form the core of 
learning). Here we note that, in order to carry out simulations, two ingredients are necessary:  

1) a level specific prediction model (which may be the result of training the immediately bottom layer) and  
2) a level specific large number of hypothetical goals.  

The latter are used to train the level-specific inverse models (which are neural networks). We also note at this 
point that such inverse problems have close similarities with various forms of optimal control: for example, a 
network that solves the inverse problem of level 2 is functionally equivalent to Model Predictive Control (MPC) 
with the difference that the network operates on a learned (rather than an engineered) model and with some 
operative advantages that will be discussed later. Similarly, the inverse problems at levels 3-4 is equivalent to 
an Optimal Control Problem (but on learned dynamics) and the inverse problems at levels 4-5 are equivalent to 
Reinforcement Learning (but with the advantage of having previously constructed a vocabulary or actions). 

Hence, to summarize, depending on the level at which simulations occur, episodes have correspondingly differ-
ent nature and complexity. To give just two examples, episodes may range from the generation of complex 
hypothetical driving situations at the very highest level (e.g., pedestrians possibly crossing the road – see section 
0) or they may be very simple target motor tasks at the lowest level (e.g., target trajectories for learning predic-
tive control – see section 0 or 3.3). 

With the above clarifications, the objectives of this section can now be stated as dealing with how to generate 
(at each level) episodes to be used for training of the level-specific inverse models.  

2.2 Genetic Operators  
The notion of genetic operators was described in D3.1 with the motivation to be able to facilitate the learning 
of safe driving by providing previously unseen and possibly useful scenarios. The motivation of using techniques 
inspired by genetic algorithms for the episodic generator is the basic idea of recombining and mutating the DNA 
of two parents to create a child with other properties than its parents. Thus, while genetic algorithms are usually 
seen as search method for better solutions, the main motivation for its use here is the ability to generate new 
distributions of target/environment states that is applicable to all levels of the subsumption architecture as 
shown with the labels “episodes” in Figure 1. 

In brief, the crossover operator enables the system to simulate new traffic contexts. The mutation operator 
enables the system to perturb the traffic configuration in a particular context. The selection operators are used 
to control the complexity of the traffic environment.  

The scenario generation mechanisms and toolchain for OpenDS is described in D3.1 and has been, for this de-
liverable, updated with pedestrian models (see Section 0) as well as a integrated it with the top-level LRM archi-
tecture (D.2.2).  

The genetic operator concept has now been applied within both the bottom up part of the system (section 3) 
and the top down part of the system (sction 4) and the level specific applications is described there. 
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3 Bootstrapping hierarchical motor abilities via embodied and episodic simulations. 
Figure 1 shows the bottom up approach for the learning of hierarchical motor abilities via offline simulations.  

 

 

Figure 1: Bootstrapping hierarchical motor abilities proceeds bottom-up. 

 

The process begins with the learning of forward models for the vehicle dynamics (level 1), which become the 
building blocks for episodic simulations (levels 2-5) that gradually bootstraps layers of competence of increasing 
complexity. 

At every hierarchical level, the abilities learned at the previous levels may be exploited in a way that simplify the 
learning task. For example, learning tactical manoeuvring (level 4) may exploit the predictive models of level 3 
(motor primitives), without necessarily carry the simulation at the lowest level of the chassis dynamics (level 1).  

In other words, at every level, a level-specific forward model is trained using the previous level forward model 
in combination with level specific episodes.  

At the lowest levels, episodes are quite simple and do not require the driving simulation environment (nonethe-
less the process requires episodes in combination with embodied simulations). The highest levels overlap with 
the competences that can be learned with the top down approach described in the next chapter. 

At the end of the bootstrapping process a subsumption architecture is obtained. It can be further extended/im-
proved/refined as new data (and new episodes) become available in a lifelong fashion. 

At every level, episodes are created with a twofold goal:  

a) to augment the training data set and  
b) to generate validation sets.  

The latter, in turn, may be used to detect situations calling for new experimental data. This way the agent not 
only learns behaviours, but it also becomes “aware” of the limitations in the training domain and (especially if a 
stochastic forward model is used) becomes “aware” of the uncertainties of desired behaviours and can, conse-
quently, choose behaviours for which the uncertainties are sufficiently bounded (for example see section 0). 

3.1 Learning forward models (level 1) 
Learning forward models is the necessary first step to create the simulation blocks for embodied, and later epi-
sodic, simulations. This corresponds to the writing of the mathematical model equations in traditional (human-
directed) engineering approach. 

There may be, in principle, several machine learning frameworks suited for forward model implementation (for 
example, in the original Dreams4Cars proposal Locally Weighted Projection Regression (LWPR) were initially 
mentioned as a possible implementation).  
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The machine learning framework used by Dream4Cars is Neural Networks (and Deep Learning when necessary) 
because of several reasons:  

a) mature neural network frameworks are readily available and relatively easy to use;  
b) as will be shown, neural network frameworks provide a uniform modelling tool across all the layers of 

the hierarchical architecture (Figure 1), i.e., the same neural network framework can be used to create 
predictive and inverse models specific of each level;  

c) albeit artificial neural networks are different than natural neural network in many aspects, they are sim-
ilar enough that implementation of biological principles is simplified (and Dream4Cars uses significant 
biological inspiration). 

3.1.1 Cerebellar filter principles 

Figure 2 shows a schematic representation of a cerebellar filter, adapted from ([2], Fig.3), used to introduce the 
principles that are borrowed by the artificial forward model networks.  

 

 

Figure 2: Architecture of the cerebellar filters. 

 

The output of one filter at time 𝑡 is produced by one Purkinje cell as a (linear) combination of the signals in the 
parallel fibres that synapse on the cell (e.g., 𝑦#,% = 𝑤#	𝑝#,%	+	𝑤+	𝑝+,%	+ ⋯+	𝑤-	𝑝-,%)1, where 𝑁 may be as large 
as 1 million fibres. Each parallel fibre is the axon of one Granular cell, which receives input signals from the 
Mossy fibres. Mossy fibres may carry the same signal sampled at different past times (delayed copies of that 
signal) such as, e.g., 𝑢#,% 	 , 𝑢#,%0# 	 , 𝑢#,%0-	as well as signals of different types such as, e.g., 𝑢#	, 𝑢+	, … , 𝑢2	, … . 
These signals may have sensory and cortical origin, or they may be copies of the motor commands.  

Each individual granular cell receives a limited number of inputs (it does not receive all the types of signals 
𝑢#	, 𝑢+	, … , 𝑢2). Hence the signals 𝑝3 represent elementary effects that are superimposed by the Purkinje cells. 
The Granular cells, individually, operate as detectors of “relatively simple contexts” [2] and their output may be 
written as 𝑝3,% = 𝐺3(𝑢6), here 𝑗 belongs to a subset of all possible 𝑢2,%9. Functions 𝐺3(. ), are also called “basis” 
functions [5], stressing the functional fact that the output of one filter (one Purkinje cell) is a linear combination 
of a large number of “basis functions” operating as context detectors. 

Finally, the Golgi cells, by inhibiting individual granular cells output, have the practical consequence of realizing 
piecewise output maps (some 𝑝3 being ignored in particular contexts 𝑝6). 

                                                             

1 Climbing fibres from the inferior Olive (not shown for clarity) carry a teaching signal that alter (all) the synaptic weights, 
effectively producing a form of supervised learning. However, the form of supervised learning used in the artificial network 
is based on classical backpropagation. 
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3.1.2 Artificial implementations 

Figure 3 shows an example artificial neural network that was used in [6] to learn the longitudinal dynamics of a 
vehicle. The network structure resembles the cerebellar filters in the sense that blocks labelled 1,..,4, corre-
sponding to the mossy fibres, individually receive only a subset of the input signals and learns the individual 
effect of air drag (1), brake pressure (2), road slope (3) and engine force (4), which are lastly superimposed at 
the final summation block.  

Furthermore, branch 4 implements the equivalent of Golgi cell lateral inhibition: 8 parallel channels individually 
predict the acceleration for each gear. The gear channel 𝐺2 (the gear context) inhibits all outputs fibres except 
that corresponding to the engaged gear. In this way a nonlinear model that predicts the vehicle acceleration 
given the engine torque and gear is realized.  

Channels 2, 3, and 4, except for the gear selection, are designed with linear layers (linear basis functions 𝐺(. )) 
which somehow restrict the generalization ability of the network on one side. On the other side, linear sub-
models for brake (2), slope (3) and engine (4) effects, means that the weights of the neural network layers are 
interpretable as the (underlying) linear impulse response of the system.  

 

 

Figure 3: Example of artificial neural network architecture for learning forward models. 

 

3.1.3 Interpretability of the networks 

This section is omitted (confidential part) 

 

3.1.4 Modelling nonlinearities 

This section is omitted (confidential part) 

 

3.1.5 Performance evaluation 

Two questions concerning the accuracy of neural network implementations of forward models have been con-
sidered: 

- How do neural network forward models compare to more traditional ones, such as, for example, para-
metric models based on ordinary differential equations? 

- How does the biological architecture compare to other possible neural network architectures? 

3.1.5.1 How do neural network forward models compare to more traditional ones, such as, for example, 
parametric models based on ordinary differential equations? 

The first question has been studied in paper [6] where the longitudinal dynamics model given in Figure 3 has 
been compared to a) a commonly used analytical model for the longitudinal dynamics and to b) a state space 
data-driven black-box model. The three models were compared on two distinct datasets: one from the FP7 In-
teractive project (a Lancia Delta on a 50 km route with mixed types of roads) and another collected with the 
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Renegade vehicle in mixed roads with separate training, validation and test routes (for the Lancia Delta two 
parts of the same route were used for training and validation). This study found that the neural network per-
formed consistently better than the state space model, which in turn was better than the parametric analytical 
model.  

The following table summarizes the findings, reporting the coefficient of determination (R2) for the three mod-
els.  

On the Lancia delta, the three models perform fair (the Analytical model) to excellent. The R2 on the validation 
set exceeds the training set (contrary to expectations) because the validation set had less stop and go events, 
which are the most difficult to model.  

On the Jeep Renegade the performance of the Analytical model drops. Also, the State Space model witnesses a 
degradation of modelling capability. Instead the Neural Network remains very good. The degradation in the 
Renegade was found to depend on a noisier engine torque signal (this signal is the engine net delivered torque 
estimated by the engine control unit, which was different in the two cars). 

The reason for the analytical model to underperform when compared to the neural network is its excessive 
rigidity. One wold expect the equations of the human engineered model to be very accurate, but in practice the 
engineer made a number of modelling assumptions and simplifications when developing the analytical model 
(see discussion in the paper), resulting in a strongly biased model which would perform well if the assumption 
were satisfied. This often is not the case and, to fit the training data, the few available model parameters are 
adjusted for best fitting, and their original meaning may be actually lost (see discussion in the paper concerning 
the implausible estimation of rolling and air drag resistance for the Renegade). 

 

Table 1: Coefficient of determination (R2) for the three models 

 Analytical parametric model State Space model Neural Network model 

Lancia Delta 94.87 % (training) 

93.39 % (validation) 

96.95 % (training) 

97.89 % (validation) 

97.82 % (training) 

98.64 % (validation) 

Jeep Renegade 86.47 % (training) 

80.14 % (validation) 

89.19 % (training) 

90.26 % (validation) 

96.9 % (training) 

97.3 % (validation) 

 

 

3.1.5.2 How does the biological architecture compare to other possible neural network architectures? 

The neural networks introduced so far are feedforward networks that use a particular architecture inspired by 
cerebellar filters. This is, of course, not the only way to realize a neural network that produce a desired input-
output map. Hence, the question of how this bioinspired architecture compares to other possible neural layer 
arrangements has been investigated in [7], where 4 combinations of feedforward/recurrent and structured/un-
structured networks have been examined (see Figure 4 caption). 

It was preliminarily argued that the dynamics of physical systems may often be described as the superposition 
of individual independent causes (forces with different origins). Hence a network architecture that combines 
independent effects is suggested by physical insight, and this is remarkably similar to the cerebellar architecture 
(Figure 2 and Figure 3). Nonetheless, one might wonder whether a shallow, but fully connected, feedforward 
network (the classical multilayer perceptron) could be a better choice. In a fully connected feedforward network, 
the hidden layer seeks combinations from all possible input (Figure 4, top right). Thus, is a more generic network 
architecture that can model input-output maps of any kind, and with any accuracy provided sufficient training 
data is available. On the other hand, networks with structure like (Figure 4, top left) are biased towards more 
efficient learning of particular types of functions. These networks have less (better focused) training parameters 
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and are more “sample efficient”, meaning that they can learn the types of function they are specialized in with 
less training data. For example, the network in Figure 4, top left, will not seek to explain the vehicle acceleration 
as (possibly) a nonlinear function of brake pressure and engine torque together, whereas the network in Figure 
4, top right, will try to combine brake and gas pedal. To discover that they are independent a significant amount 
of training examples is required. Since brake and engine effects are indeed independent, the network on the left 
is more efficient. In one case, left, prior knowledge (independence of brake and engine sub-plants) is embedded 
in the network topology. In the other case, right, independence of the two inputs has to be learned and this 
requires more data and/or exposes to more overfitting risks. 

In [10] (see also talk https://neuroscience.stanford.edu/videos/reinforcement-learning-fast-and-slow) M. Bot-
vinik, while discussing the slowness of Deep Learning methods make similar considerations. He argues that fast 
learning may only occur with biased neural networks, which in nature are the result of evolution (i.e., of a “slow” 
learning process). 

  

  

 

Figure 4: Candidate network topologies that were studied in [7] for implementation of forward models. Top 
row: feedforward networks. Bottom row: recurrent network. Left column: Networks with cerebel-
lar structure (superposition of independent effects). Right column: Fully connected unstructured 
networks. 

 

Another question addressed in [7] concerns whether recurrent neural network might be better that feedforward 
networks (Figure 4 bottom row versus top row). The dynamics of a vehicle (as well as any physical system) have 
an infinite response but the feedforward networks on top operate with a finite memory (hence they neglect 
input past the memory length). The response of system modelled like in (Figure 4 top row) is truncated as if the 
system were a Finite Impulse Response filter. Nonetheless, since the response of all stable physical system van-
ishes in some time, the truncation error may be negligible if memory of sufficient length (𝑛 large enough) is 
used. Recursive neural network (Figure 4 bottom row) have, on the other hand, infinite memory. This, far from 
being a real advantage, brings about more trainable parameters that makes the recurrent network more prone 
to overfit. Recurrent network would be more general, capable of learning the response whichever its length, 
whereas feedforward networks are biased towards learning system with a given maximum memory length. 
Again, the more general network is less sample-efficient and may use its (otherwise null) parameters concerned 
with old events to overfit the training data. 
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Figure 3. Structured convolutional network (ii). Dotted boxes correspond to (1) air drag, (2) braking force,
(3) slope e↵ect and (4) engine torque respectively.

the various converging network branches model di↵erent fi in eq. (3). On top the
instantaneous velocity is squared and enters a layer which learns the air drag coe�cient
and the rolling resistance (gain and bias of the single neuron constituting the layer).
On the second row, the brake pressure history – same 25 values than in network (ii)
– enters a neural layer which learns the acceleration e↵ect of the brake, which was
supposed linear (and the hypotheses was then verified in the training). The following
ReLu (Rectified activation unit) was included to enforce the fact that brake forces
can only cause decelerations (which helps the training convergence). The third row
estimates the acceleration caused by road slope. Finally the bottom row estimates the
tractive force and acceleration. Here the 25 past engine torque values enter a neural
layer with 8 output neurons. Each neuron learns the propulsive acceleration that would
be caused by one gear. Only the neuron corresponding to the active gear is then passed
downstream. The total number of learn-able parameters in this network is 248 of which
200 are in the engine layer which learns the e↵ects of the drive-line for the 8 di↵erent
gears in parallel.

In fig. 2 the predicted acceleration by the unstructured and structured networks are
compared with the measured acceleration. It can be seen that the structured network,
despite the reduced number of parameters, provides a better fit.

5.3. Comparison between unstructured and structured convolutional
networks

The networks performances are evaluated by examining the power spectral density
[11] of: a) the acceleration signal, b) the fit residuals of network (ii), c) the fit residuals
of network (i) and d) the measurement noise (fig.4). The latter is estimated by ex-
tracting the parts of the acceleration signal (after Kalman filtering) where the vehicle
is running with constant velocity. This stretch of data, of only about 50 s in total,
is de-trended, windowed (Hamming type) and its power spectral density is calculated
with the periodogram method [12] as a reference level (the pink line in the chart). The
limited time span of the extracted acceleration noise does not allow the calculation of
the noise spectral density as the mean of many estimates, resulting in a significantly
greater scatter of the plotted line (compared to the other curves). Conversely, spectral
densities of the signal and residuals are the average of about 10 estimates.

We make the assumption that the system is of output-error type, which sees the noise
superimposed to the system output without being subjected to the system dynamics.
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Figure 2. Example of measured signals and convolutional networks prediction. Accelerations are rescaled
with respect to the maximum measured acceleration (3.1ms�2).

latter is encoded by a unit vector layer (layer 1) which returns a vector of length 8
(number of gears counting the neutral gear) with all elements set at zero except the
element corresponding to the active gear which is set at 1. This vector is concatenated
with the other inputs on layer 2 (hence layer 3 receives 8 signaling neurons that specify
which is the currently active gear). Note that only the instantaneous velocity is given
in the inputs: the network can thus use this information to model air drag, but has no
cue to derive acceleration form di↵erentiation of the velocity.

Given this structure, the length of the time history of each input had to be defined
with care. Extending to excessively old samples increases the number of learn-able
parameters, with the risk of over-fitting. Conversely, too short an history makes the
network unable to grasp the system dynamics that occurs in larger timescales. Note
that the longest windows, extending back to 25 samples, means 1.25 seconds, which
is a time interval su�cient for most of the longitudinal dynamics time scales.

Figure 2 gives an example of the network performance. In the excerpted record
both acceleration and deceleration maneuvers are present with related gear shifts.
The network captures the main longitudinal dynamics phenomena (including drive-
line vibrations), as shown by the typical oscillations of the acceleration that follow
gear shifts, especially at low gears.

5.2. (ii) Structured convolution-like neural network

In the structured network (ii) the neurons are organized as shown in fig. 3 in order
to process the input signals according to the physics inspired logic eq. (3). Here,
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Figure 7. Structured recurrent network (iv). Dotted boxes correspond to (1) air drag, (2) braking force, (3)
slope e↵ect and (4) engine torque respectively.

and in the weights and biases of the linear layer. The state dimension (m=23) is
chosen such that the number of learnable parameters (852) is very close to that of the
unstructured convolutive network.

The network is trained as stateless: a sequence of 25 input vectors – the same size
of the history of networks (i) and (ii) –, uk�24, ...,uk is taken, beginning with the
null state sk�24 = 0. The output of the recurrent layer is a sequence of 25 states
sk�24, ..., sk of which the first 24 are not considered to ignore the transient phase (it
was assumed and verified that the transient response lasts less than 25 steps). The last
state sk is considered (extracted via the Sequence Last (SL) layer) and transformed
into the estimated acceleration v̇k that is trained against the actual acceleration.

6.2. (iv) Structured recurrent neural network

Figure 7 shows the structured recurrent network (iv). In this case each individual
signal feeds a dedicated BR recursive layer, where overall the structure follows the (ii)
template (fig. 3). The individual BR layers are assigned a reduced state dimension
(m=6) in order to produce a total number of train-able parameters (262) similar to
that of the convolutive version (ii). The network is trained the same way as network
(iii).

6.3. Comparison between unstructured and structured recurrent networks

The analysis of the fit residuals of the unstructured and structured recurrent net-
works in the frequency domain shown in fig. 8 highlights that the performance of the
unstructured network looks slightly better in the bandwidth up to 2-3 Hz and both
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and in the weights and biases of the linear layer. The state dimension (m=23) is
chosen such that the number of learnable parameters (852) is very close to that of the
unstructured convolutive network.

The network is trained as stateless: a sequence of 25 input vectors – the same size
of the history of networks (i) and (ii) –, uk�24, ...,uk is taken, beginning with the
null state sk�24 = 0. The output of the recurrent layer is a sequence of 25 states
sk�24, ..., sk of which the first 24 are not considered to ignore the transient phase (it
was assumed and verified that the transient response lasts less than 25 steps). The last
state sk is considered (extracted via the Sequence Last (SL) layer) and transformed
into the estimated acceleration v̇k that is trained against the actual acceleration.

6.2. (iv) Structured recurrent neural network

Figure 7 shows the structured recurrent network (iv). In this case each individual
signal feeds a dedicated BR recursive layer, where overall the structure follows the (ii)
template (fig. 3). The individual BR layers are assigned a reduced state dimension
(m=6) in order to produce a total number of train-able parameters (262) similar to
that of the convolutive version (ii). The network is trained the same way as network
(iii).

6.3. Comparison between unstructured and structured recurrent networks

The analysis of the fit residuals of the unstructured and structured recurrent net-
works in the frequency domain shown in fig. 8 highlights that the performance of the
unstructured network looks slightly better in the bandwidth up to 2-3 Hz and both
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Table 2: Coefficient of determination (R2) feedforward/recurrent, structured/unstructured neural networks 

 Feedforward network Recurrent network 

 Unstructured Structured Unstructured Structured 

Training 93.8 % 97.8 % 98.7 % 98.0 % 

Validation 93.5 % 97.0 % 95.6 % 96.5 % 

 

Table 2, from [7], confirms the above arguments. The best fit on the validation set is from the structured feed-
forward network. The generic feedforward network has less modelling ability. The recurrent networks overfit 
the training data. 

 

3.1.6 Stochastic forward models 

This section is omitted (confidential part) 

 

3.1.7 Example. Stochastic forward model for the Renegade steering actuator 

This section is omitted (confidential part) 

 

3.1.8 Spectral considerations and impulse response 

This section is omitted (confidential part) 

 

3.1.9 Comparing learned forward models 

This section is omitted (confidential part) 

 

3.2 Learning inverse models 
This section is omitted (confidential part) 

 

3.2.1 Supervised learning of inverse models from recorded input-output example data 
(level 1) 

This section is omitted (confidential part) 

 

3.2.2 Unsupervised learning of inverse models via episodic-embodied simulations (level 2) 

This section is omitted (confidential part) 

 

3.2.3 Robust unsupervised learning via simulations with bootstrapped forward models (level 2) 

This section is omitted (confidential part) 
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3.3 Learning motor primitives (level 3) 
This section is omitted (confidential part) 

 

3.3.1 Control with inverse model 

This section is omitted (confidential part) 

 

3.3.2 Robust optimal control (choice of desired trajectory that is likely to be executed 
best) 

This section is omitted (confidential part) 

 

3.3.3 Short-cutting the simulation paths 

This section is omitted (confidential part) 

 

3.3.4 Comparison with literature probabilistic motion models 

This section is omitted (confidential part) 

 

3.3.5 Example. Predicting uncertainty in the trajectory curvature  

This section is omitted (confidential part) 

 

3.3.6 Relation to Optimal Control 

This section is omitted (confidential part) 

 

3.3.7 Learning the motor cortex salience 

This section is omitted (confidential part) 

 

3.3.7.1 Example learning the lateral salience 

This section is omitted (confidential part) 

 

3.3.7.2 Relation to Reinforcement Learning 

This section is omitted (confidential part) 

 

3.4 Learning of the salience and action sequences (level 4) 
This section is omitted (confidential part) 
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4 Top down approach 
This section is omitted (confidential part) 

 

4.1 Pedestrian Models: learning the safe speed (level 5) 
4.1.1 Motivation 

As suggested above (also Figure 1), level 5 of the hierarchy concerns high-level behaviours such as setting the 
safe speed and navigation goals. To address the mechanisms needed for those levels we have focused on speed 
adjustment to pedestrians. Interpreting pedestrian intentions are sometimes difficult for human drivers. A com-
mon type of car-to-pedestrian interaction situation involves a pedestrian near or in the road and the need to 
determine whether he or she will attempt to cross the road. Naturalistic studies of car-to-pedestrian incidents 
have found that failure of adjusting the speed the main cause of incidents and sudden hard breaking [29]. By 
applying a novel method of analysis Habibovic et al. [29, pag. 562] drew the following conclusion regarding the 
design of ADAS systems in cars:  

“When driving straight through intersections, incidents were mainly associated with the late timing 
of action(s) and high speed. These events were, in turn, preceded by misjudgement of the traffic 
situation. In several cases, the drivers who had enough information in the traffic environment to 
anticipate that pedestrians might enter the road did not adjust their speed to accommodate a gen-
tle stop. This finding indicates that ADAS need to support timely notification of potential conflict 
pedestrians even when there is information in the environment that suggests that a pedestrian 
might cross the car’s path.” 

The fact that information gained from pedestrian’s trajectories, speed, and other possible cues in a given context 
is insufficient for a human driver may indicate that it is not a trivial problem, even from a machine learning 
perspective. For example, as noted above, only a small fraction of the visible pedestrians are likely to intersect 
with the vehicle path; and the cause of the pedestrian’s behaviour might not be externally observable, such as 
e.g., suddenly remembering having forgotten something and suddenly turning back. Another commonly ob-
served problem, is occlusion caused by temporary or permanent obstructing objects, such as vehicles or other 
types of constructions [29]. While there are rules and laws for pedestrian behaviors these are not always fol-
lowed for many reasons. For example, distracted walking caused by e.g. head-phone use or engagement with 
an electronic device contributes to accidents [30], [31]. To help drivers and reduce the number of pedestrian 
related accidents many car manufacturers have included different types of pedestrian detection systems with 
automatic braking. A recent report from the American Automotive Association (2019, October) showed that the 
performance of four existing such systems were limited in complex scenarios and at speeds above 20mph [32]. 
The study suggested that the systems could prevented collision with a crossing adult pedestrian crossing per-
pendicular to the road when traveling at 20 mph, but that in speeds of 30 mph, or more complex scenarios of a 
child running into the road, the systems were significantly less ineffective. Thus, in these cases the human driver 
still needs to be attentive. A possible addition to automatic braking systems are so called safe speed systems 
which recommend or set a safe speed based on contextual cues, such as the existence of a pedestrian crossing 
or upcoming curves [33], [34]. Nevertheless, avoiding car-to-pedestrian incidents is a challenging task and we 
study this by means of episodic simulations and reinforcement learning with deep q-networks.  

As will be noted in the following sections, there are some limitations to the realism of simulations and one 
additional limitation is that we have not included signalized crossings, footbridges and under passes in our sim-
ulations; but it should be noted that the addition of such constraints would influence the pedestrian behaviours 
as well, such as perhaps reducing, but not eliminating, the likelihood to cross outside zebra crossing e.g. [35]. 

4.1.2 Pedestrian interface for the OpenDS simulation enviornment 

This section is omitted (confidential part) 
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4.1.3 Pedestrian models 

This section is omitted (confidential part) 

 

4.2 Reinforcement learning  
This section is omitted (confidential part) 

 

4.2.1 Algorithm 

This section is omitted (confidential part) 

 

4.3 Reinforcement Learning within simulations in OpenDS  
This section is omitted (confidential part) 

 

4.4 Applications 
This section is omitted (confidential part) 

 

4.4.1 Application 1: lane keeping 

This section is omitted (confidential part) 

 

4.4.2 Application 2: progressive learning with episodic simulations 

This section is omitted (confidential part) 

 

4.4.3 Application 3: safe speed with visible pedestrian 

This section is omitted (confidential part) 

 

4.4.4 Application 4: safe speed with occlusion 

This section is omitted (confidential part) 

 

4.4.5 Application 5: safe speed with diverse pedestrian behaviour  

This section is omitted (confidential part) 

 

4.4.6 Application 6: learning to overtake safely (level 5) 

This section is omitted (confidential part) 
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5 Conclusion 
The main contribution of this documents, which in fact are the main findings of Dreams4Cars, is perhaps well 
summarized by the learning process of Figure 1. This process is about learning models of the wold (both models 
that predict the effect of actions and models that predict events) that are then manipulated offline to synthetize 
action strategies. 

This process appears to be very efficient both with respect to synthetizing good action models (inverse models) 
and for sample efficiency (optimal use of available data). The process bootstraps a hierarchical sensorimotor 
architecture where each level learning is accelerated by what was learned at the immediately precedent level. 
The obtained sensorimotor system replaces corresponding aspects of traditional motor control (MPC, Optimal 
Control, Trajectory planning, etc.). 

Overall the process can be seen as an unsupervised training procedure: forward models learned at a given level 
are used to create the inverse models for the next level of control. The only necessary data are examples of 
events (used for creating the training episodes) and the learning of the lowest-level forward model (which is a 
form of supervised learning using input-out pairs recorded at the wake state). 

The lower levels of this procedure (such as. e.g., the training of inverse models of the vehicle dynamics) appear 
to have some resemblance with the restructuring of neural networks in sleep stage N2. Higher-levels of episodic 
simulations looks somehow similar to REM dreams. 

While the procedure creates the blocks for higher-levels of simulation abstractions, these blocks become also 
available for the very highest-level which may be implemented via Reinforcement Learning. This way RL may 
proceed on a low-dimensional state-action space and be, in principle, more efficient because on top of efficient 
neural networks. It is also worth observing that, beginning at the level of motor primitives, the main goal for 
learning inverse models is not just learning the action for one specific goal, but a function that returns the value 
of actions for posterior action selection. This value function is the salience stored in the “motor cortex”. It is 
functionally equivalent to the reward function in RL, but its computation is not achieved via a trial and error 
exploration (the RL way) but via a synthesis process based on the offline manipulation of learned models of the 
world (the inspiring idea of Dreams4Cars). 

Concerning perception aspects, Dreams4Cars is based on symbolic representations produced by off the shelf 
sensors because these sensors will be used for some (quite long) time in the first generations of automated 
vehicles. Dealing with symbolic representations means that it was a human designer that defined the symbol 
systems (with unavoidable omissions on one side and unnecessary information on the other side). On the other 
hand, crossover and mutation operators in such a symbolic context is quite easy to do, and so it is easy to create 
“dreams” or episodes. Prospectively, however, one might wish replacing the human choice of symbols with a 
self-organized perception system that compresses high-dimensional sensor data into the low dimensions that 
are most useful for action. Such an architecture is described next as a possible evolution, and leverages on the 
notion of Convergence Divergence Zones as proposed by Damasio. Hence the finding of Dreams4Cars may be, 
in principle transferred to systems that, besides learning behaviours, may also contextually learn to interpret 
the world (what is relevant for action). 

5.1.1 Note on Reinforcement Leaning 

Reinforcement learning was chosen to a large extent on the basis of the bio-inspired approach taken here. Not 
only insofar as the inspiration of how the animal brain uses reinforcement learning for certain tasks, but also to 
align with a view where cognition is not separated from perception and action (see e.g. [49]) which separates 
our approach from the mainstream approach of providing explicit borders between perception and decision 
making/motor control (as exemplified by the review in [50]). However, as already noted above DRL is not an 
automatic solution to the problems posed and we experienced some difficulties, such as integrating the DRL 
with the developed Action Selection system (D2.1) mainly because of the dimensionality of the problem (Section 
0). In comparison to the bottom-up approach, the top-down approach with automatic scenario generation and 
reinforcement learning methodologically required more computational time, it requires significant re-
searcher/engineering top down design of reward function and choice of hyperparameters, which limits the use-
fulness of the approach. Although not pursued here, future research to achieve a fully automatic training system 



D3.2 Simulation system (release 2)  Grant Agreement No. 731593 

Dreams4Cars  Page 20 of 29 

for AD, more research needs to be devoted to research independent methods for reward function development 
and hyperparameter setting. However, it should be noted that the DRL added possible benefits to the existing 
co-driver architecture by adding suggestions of the appropriate speed given contextual clues in the environ-
ment. Another notable outcome of the work on reinforcement learning, is the results on and new ways of im-
plementing a replay buffer [51]. Although previous studies have found increased performance with the addition 
of a replay buffer [51], [52] our results indicate that the performance of the replay buffer depends on the input-
data and task requirements (see Section 0). Furthermore, we developed a method for handling rare events, 
which is an important aspect of autonomous driving and can be used in future (see Section Errore. L'origine 
riferimento non è stata trovata.). 

5.2 Future developments 
So far, Dreams4Cars is focused on the synthesis of behaviours assuming the use of existing sensor technology. 
This choice was motivated in the original proposal by the consideration that first generations of automated 
vehicles will use perception systems based on the (evolution of) the current sensor technology.  

The input to Dreams4Cars is thus the symbolic output of the used sensor subsystems, in which the symbols have 
been chosen by the engineers that developed the “smart” sensors.  

It makes however sense to reason about possible future developments, in which the perception system itself is 
integral part of the Agent: the Agent not only learns better behaviours, but it can also learn to extract action 
relevant information from raw sensory data; i.e. creating its own concepts and representations.  

  

 

Figure 5: Evolution of Agent architecture to allow learning in the entire perception action system, with in 
particular the ability learn at perception and forming novel concepts. 

 

This idea is expressed in Figure 5. The current Dreams4Cars sensorimotor system is shown in red colour. Because 
the automotive sensors provide pre-processed high-level symbols, part of the dorsal stream is in truth bypassed 
and the sensor output signals are used to detect affordances and compute motor cortex as they are.  

In a certain sense it is like the Agent does not see the real world, but the encoding of the environment with the 
concepts/symbols that have been chosen by the designer. To clarify this point, let us refer to Figure 6, which is 
an example of symbolic representation based on human selected concepts. In the example, a neural network 
(Ademxapp Model A1 Trained on Cityscapes Data) was used to produce a semantic segmentation of a camera 
view. It is important to observe that the classes in which the image is segmented (shown in the legend) were 
decided by the engineers that developed the neural network; and in this case, they did not conceive different 
labels for the minivan with the open door and the other cars. Consequently, the dangerousness of the minivan 
is not perceived, because all vehicle types are projected onto the same, unique, vehicle class. Re-training the 
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semantic segmentation network with more classes would be a humongous endeavour: first it would be difficult 
to know exactly how many vehicle sub-classes are necessary; then re-labelling the training images would be a 
great cost and, finally, even if it is known that there is a minivan with an open rear door in itself this does not 
give any precise information about what kind of behaviour is necessary to manage the risk (it would make the 
downstream decision system to explode in complexity). 

It makes thus sense to evaluate the possibility that the perception system becomes integral part of the Agent, 
which receives raw (or lower-level) sensory data and learns to form/update concepts by itself. This is shown 
with the dark violet dashed line in Figure 5.  

 

 

Figure 6: Example of semantic classification based on classes (hence concepts) defined by a human designer. 
The dangerousness of the minivan with the open door is lost is lost because the real situation (on 
top) is projected onto a predefined number of classes that do not make distinction between the 
minivan and the other cars.  

 

The theoretical framework that looks better suited for this appears to be the notion of Damasio’s convergence-
divergence zones (CDZ) that has been mentioned in previous deliverables (e.g., D2.3 section 2.1.5). According to 
this guiding theory, sensory information is forcefully compressed in convergence zones (a-b in Figure 5), encod-
ing in compact form the environment and agent states. Since these concepts are then used for generation of 
affordances and computation of the value of each one (b-c in Figure 5), any optimization/learning process will 
lead to retain only the information that is relevant for action. At the same time, should there exist two similar 
environmental states that require different actions (car vs. minivan) a learning process (we do not argue here of 
what type) will necessary lead to differentiate the representations of those two states at b. 

As already explained in previous deliverables the CDZ architecture can be (approximately) constructed into an 
artificial neural network with branches for the forward and inverse data flows (D2.3, Figure 5). 
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Avery simple way to train the convergence part of the CDZ architecture is by means of an autoencoder that 
implements the forward a-b and backward b-a paths (D2.3 section 2.1.5). It must be observed that this form of 
training, albeit simple, is not ideal because the latent space formed in this way is optimized for reproducing the 
sensory input as best as possible. Instead the ultimate goal should be to optimize the latent space in detecting 
patterns that are mapped onto different actions. 

In the following we present a first investigation of the implementation of the CDZ architecture for visual sensory 
input. The latent space is trained with the autoencoder approach on the a-b-a path but this process is aug-
mented by branches trained to detect vehicles and lanes with (for the moment) semi-supervised approach. We 
show how the concepts formed in this latent space can be, in principle, manipulated to predict near future states 
and/or to form imaginary environmental states using the crossover operator. Finally, we discuss how to train 
the CDZ architecture on the (ultimate) a-b-c path via simulations. 

5.2.1 Mental imagery for Automated Vehicles using Damasio’s CDZ architecture 

Over the years the CDZ hypothesis has found support of a large body of neurocognitive and neurophysiological 
evidence. However, it is a purely descriptive model and does not address the crucial issue of how the same 
neural assembly, which builds connections by experiences in the convergent direction, can computationally 
work in the divergent direction as well. At the moment, there are no computational models that faithfully repli-
cate the behaviour of CDZs, however, we found a number of independent notions, introduced in the field of 
artificial intelligence for different purposes, which bear significant similarities with the CDZ scheme. 

In the realm of artificial neural networks, the computational idea that most closely resonate with CDZ is the 
autoencoder. There is a clear correspondence between the encoder and the convergence zone in the CDZ neu-
rocognitive concept, and similarity between the decoder and the divergence zone. 

5.2.1.1 Convergence-Divergence as Convolutional-Deconvolutional Autoencoder 

One of the major challenges in cognitive science is explaining the mental mechanisms by which we build con-
ceptual abstractions. The conceptual space is the mental scaffolding the brain gradually learns through experi-
ence, as internal representation of the world. CDZs are a valid systemic candidate for how the formation of 
concepts takes place at brain level. However, the idea of CDZ is just sketched and cannot provide a detailed 
mechanism for conceptual abstractions. 

According to the historical empiricist tradition, conceptual abstractions is derived from experience, mostly per-
ceptual experience. This direction fits perfectly with the approach implemented by artificial neural networks. 

Still, a difficulty with acquiring even moderately abstract categories lies in the mutually inconsistent manifesta-
tions of the characteristic features of a category, in each of its real exemplars. In visual data, for example, object 
translation, rotation, motion in depth, deformation and lighting changes can drastically entangle features of 
objects belonging to the same category. Conversely, the perceptual appearance of two unrelated objects, like a 
close flying insect and a far distant vulture, can be very similar. A suggested solution to this difficult issue is in 
the transformational abstraction [53] performed by a hierarchy of cortical operations, as in the ventral visual 
cortex. The essence of transformational abstraction, from a mathematical point of view, should lie in the com-
bination of two operations: linear convolutional filtering and nonlinear down-sampling. Operations of this sort 
have been identified in the primary visual cortex and the staking of this process in hierarchy is well recognized 
in the primate ventral visual path [54]. 

Let us now dive into detail of how convergence can be achieved inside autoencoders. The most common way is 
stacking feed-forward layers with decreasing number of units. There is, however, an interesting alternative 
closely related to the transformational abstraction hypothesis: the deep convolutional neural networks (DCNNs). 
The DCNN implements the hierarchy of convolutional filtering alternated with nonlinear down-sampling, and it 
is considered the essence of transformational abstraction. 

DCNNs do not only resonate with the theoretical proposal of transformational abstraction, there is a growing 
evidence of striking analogies between patterns in DCNN models and patterns of voxels in the brain visual sys-
tem [55]. 
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DCNNs are therefore a highly biologically plausible implementation for the convergence zone in CDZs, at least 
in the case of visual information. Convolutional neural models do not include a divergence counterpart, typically 
the outputs of the last convolutions are fed into ordinary feed forward layers to produce a classification. This 
gap was filled with the deconvolutional neural networks, performing alternation of un-pooling and linear filter-
ing. Each step of these two operations reconstruct a higher level of spatial dimension of the data, up to the full 
high dimension of the original image. This stacked combination of deconvolution and un-pooling is the current 
neural implementation closer to the idea of divergence zone of CDZs. 

5.2.1.2 Predictive Brain as Variational Autoencoder 

The reason why cognition is mainly explicated as simulation, as in the simulation theory of cognition of Hesslow, 
is because the brain through simulation can achieve the most precious information of an organism: a prediction 
of the state of affairs in the environment in the future. The need of predicting, and how it moulds the entire 
cognition, has become the core of a theory which has gained large attention in the last decade, made popular 
under the term “predictive brain”, or “free-energy principle for the brain”, by Karl Friston [56]. According to 
Friston, the behaviour of the brain – and of an organism as a whole – can be conceived as minimization of free-
energy, a quantity that can be expressed in several ways depending on the kind of behaviour and the brain 
systems involved. 

Free-energy is a concept originated in thermodynamics, as a measure of the amount of work that can be ex-
tracted from a system. What is borrowed by Friston is not the thermodynamic meaning of the free-energy, but 
its mathematical form only. The basic form of the free-energy under the variational Bayesian framework is bor-
rowed by Friston for abstract entities of cognitive value. For example, this is his free-energy formulation in the 
case of perception: 

                     
where x is the sensorial input of the organism, c is the collection of the environmental causes producing x, a are 
actions that act on the environment to change sensory samples, and z are inner representations of the brain. 
The quantity 𝑝̌(c|z) is the encoding in the brain of the estimate of causes of sensorial stimuli. The quantity 
p(c|x,a) is the conditional probability of sensorial input conditioned by the actual environmental causes c. The 
discrepancy between the estimated probability and the actual probability is given by the Kullback-Leibler diver-
gence ∆>?. The minimization of 𝐹A in equation optimizes z. 

In the last few years there has been renewed interest in the area of Bayesian probabilistic inference in learning 
models of high dimensional data. The Bayesian framework, variational inference in particular, has found a fertile 
ground in combination with neural models. A new approach connecting autoencoders and variational inference 
became quickly popular under the term variational autoencoder, and a variety of neural models including such 
idea have been proposed over the years.  

The interesting aspect is that the adoption of variational inference lead to a mathematical formulation impres-
sively similar to the concept of free energy in Friston. The following equation shows the loss function of a varia-
tional autoencoder: 

  
where x is a high dimensional random variable, z the representation of the variable in the low-dimensional latent 
space. Θ	and Φ are parameters describing, respectively, the decoder and encoder of the network. 𝑝D	is com-
puted by the decoder and represents the desired approximation of the unknown input distribution 𝑝, and 𝑞G is 
the auxiliary distribution computed by the encoder from which to sample z. E is the expectation operator, and 
∆>?is the Kullback-Leibler divergence.  

It is evident how equations (1) and (2) are impressively similar. This close analogy went unnoticed by all the main 
developers of variational autoencoder. It is not so surprising because mainstream deep learning is driven by 
engineering goals without any interest in connections with cognition. Within the philosophy of Dreams4Cars, 
the strong connection between a well-established cognitive theory and a computational solution, greatly argues 
in favour of adopting such solution. 
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5.2.1.3 A CDZ-like Model for Driving 

As described above, we reviewed several components that match quite closely the relevant neurocognitive the-
ories mentioned before. Our proposed model attempts to weave together these components, finalized at visual 
perception in an autonomous driving agent. 

Similarly to the hierarchical arrangement of CDZs in the brain, our model is provided with different levels of 
processing paths. A first processing path starts from the raw image data and converges up to a low-dimension 
representation of visual features. Consequently, the divergent path outputs in the same format as the input 
image. The other processing path leads to representations that are no more in terms of visual features, rather 
in terms of concepts. As discussed before, our brain naturally projects sensorial information – especially visual 
– into conceptual space, where the local perceptual features are pruned and neural activation code the nature 
of entities present in the environment that produced the stimuli. 

In the driving context it is not necessary to infer categories for every entity present in the scene, it is useful to 
project in conceptual space only the objects relevant to the driving task. In the model presented here we choose 
to consider the two main concepts of cars and lane markings. 

 

 

Figure 7: The architecture of our variational autoencoder. 

 

As depicted in Figure 7: The architecture of our variational autoencoder., the presented variational autoencoder 
is composed of one shared encoder and three independent decoders, and all the components of the architecture 
are trained jointly. The encoder compresses an RGB image to a compact high-feature representation. Then the 
decoders map different part of the latent space back to separated output spaces: one into the same visual space 
of the input; the other two into conceptual space, producing binary images containing, respectively, cars entities 
and lane markings entities. 

Therefore, in our implementation the entire latent vector z represents into the visual space, and at the same 
time two inner segments project specifically into the car and lane marking concepts. The rationale for this choice 
is that in mental imagery there is no clear-cut distinction between low-level features and semantic features: the 
entire scene is mentally reproduced but includes the “awareness” of the salient concepts present in the scene. 

Note that the idea of partitioning the entire latent vector into meaningful components is not new. In related 
works the latent vector is sometimes partitioned in one segment for the semantic content and a second segment 
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for the position of the object. Our approach is different. While we keep disjointed the two segments for the car 
and lane concepts, we fully overlap these two representations within the entire visual space. This way, we ad-
here entirely to the CDZ principle, and try to achieve the full scene by divergence, but at the same time including 
awareness for the car and lane concepts. 

 

 

Figure 8: Results of our model for a selection of frames from the SYNTHIA dataset, with different environ-
mental and lighting conditions. 

 

Figure 8: Results of our model for a selection of frames from the SYNTHIA dataset, with different environmental 
and lighting conditions. shows a selection of results achieved with the model just described. The final architec-
ture is trained for 200 epochs, and used 4 convolutional layers in the encoder, 4 deconvolutional layers for each 
decoder, and a latent space representation of 128 neurons, of which only 16 encoding the car concept and 
another 16 for the lane marking concept. We trained and tested the presented model on the SYNTHIA dataset, 
a large collection of synthetic images representing various urban scenarios. 

The images are processed to better show at the same time the results on conceptual space and visual space. 
The coloured overlays highlight the concepts computed by the network: the cyan regions are the output of the 
car divergent path, and the pink overlays are the output of the lane markings divergent path. The figure includes 
a variety of driving situations, going from sunny environments (top rows) to very adverse driving conditions 
(bottom rows) in which the detection of other vehicles can be challenging even for a human.  

These results nicely show how the projection of the sensorial input (original frames) into conceptual represen-
tation is very effective in identifying and preserving the sensible features of cars and lane markings, despite the 
large variations in lighting and environmental conditions. 

For more details and results on this approach, refer to [57]. 

We presented a neural model for visual perception in the context of autonomous driving, grounded in a number 
of concepts from neuroscience and cognitive science. The main guiding principle is the CDZs proposed by Meyer 
and Damasio that in our context represent the neural correlate of mental imagery as simulation. CDZs find their 
best artificial cousin in the neural autoencoder architecture. For the choice of how to realize the convergence 
zone in the encoder, the guiding cognitive theory is that of transformational abstraction, suggesting the adop-
tion of convolutional networks. One more theoretical contribution, the free-energy principle of Friston, further 
suggests refining the autoencoder architecture as variational autoencoder. Based on these premises, our model 
aims at gaining an internal low-level representation of two spaces: the visual one and the conceptual one. The 
latter is limited to the two most crucial concepts during driving: cars and lane markings. We succeeded in achiev-
ing an internal representation as compact as with 128 units only, of which 16 units are enough to recognize the 
car concepts in any location of the visual space, and similarly for the lane concepts. Our future plans involve the 
finalization of the higher-level model of the architecture which computes motor commands from the conceptual 
representation of the environment presented in this work. 



D3.2 Simulation system (release 2)  Grant Agreement No. 731593 

Dreams4Cars  Page 26 of 29 

 

5.2.2 Neuralized logical reasoning 

This section is omitted (confidential part) 
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