

This project has received funding from the European Union's Horizon 2020 research and innovation
programme under grant agreement No 731593

Dream-like simulation abilities
for automated cars

Grant Agreement No. 731593

Deliverable: D5.3. – Evolved Agent

Dissemination level: PU - Public

Delivery date: 3/December/2019

Status: Final

Deliverable D5.3 – Evolved agent Grant Agreement No. 731593

Dreams4Cars Page 2 of 16

Deliverable Title Evolved Agent

WP number and title WP5 Agent evolution, evaluation of ability levels and final assess-
ment of the technology

Lead Editor Henrik Svensson, HIS

Contributors

Mauro Da Lio, UNITN

Creation Date 14/April/2019 Version number 0.9

Deliverable Due Date 31/October/2019 Actual Delivery Date 3/December/2019

Nature of deliverable

X R - Report

X O – Other – Software, technical diagram

Dissemination Level/ Audi-
ence

X PU – Public, fully open

Version Date Modified by Comments

 0.1 14/April/2019 Mauro Da Lio Initial draft (initial document structure).

0.2 31/August/2019 Mauro Da Lio Section 5 dealing with steering actuator in-
verse model control.

 0.3 23/September/2019 Mauro Da Lio Sections on Jeep Renegade forward models.

0.4 24/September/2019 Mauro Da Lio Sections on Jeep Renegade lateral inverse
model control.

0.5 19/November/2019 Mauro Da Lio The document content has been restruc-
tured by splitting the description of the
agent development (which remains in this
document) and the quantitative assessment
of the system achieved abilities (which has
been moved to D5.4). This was done to bet-
ter adhere the DoA and, also, because the
contents of D5.4 are mostly confidential (in-
cluding materials that cannot be anticipated
because it is going to be used in future pub-
lications).

Deliverable D5.3 – Evolved agent Grant Agreement No. 731593

Dreams4Cars Page 3 of 16

Excerpt of D5.4 which can be made public
are given in appendix.
As a consequence, in D3.2/3.3 where exam-
ples pointing to D5.3 were mentioned, they
have to be interpreted as pointing to D5.4.

0.6 19/November/2019 Mauro Da Lio Section 1 (new) and Appendix 1.

0.7 28/November/2019 Mauro Da Lio Sections 2.1 and 2.2.

0.8 2/December/2019 Mauro Da Lio Sections 2.3-5 and section 3.

0.9 3/December/2019 Mauro Da Lio Final version after internal revision.

Deliverable D5.3 – Evolved agent Grant Agreement No. 731593

Dreams4Cars Page 4 of 16

Executive Summary

This deliverable describes the process followed for the evolution of the agent.

We first provide an overall assessment of the tests carried out and passed in the quality assurance program:
there are 13 Automotive grade tests that have been progressively implemented and passed with codriver ver-
sions beginning with 9.5.

In the second part of the deliverable the developmental workflow is described and contrasted with the tradi-
tional workflow in order to increase the confidence of potential adopters of the technologies.

The public version of the agent and simulation system is mentioned in section 3, which points to D5.5 (the open
data pilot).

Deliverable D5.3 – Evolved agent Grant Agreement No. 731593

Dreams4Cars Page 5 of 16

Table of Contents

1	 Evolution of the Agent sensorimotor system.. 6	
1.1	 Agent	implementations	...	6	
1.2	 Overview	of	the	agent	evolution	..	6	

2	 Developmental workflow ... 8	
2.1	 Step	1	–	Vehicle	dynamics	models...	9	
2.2	 Step	2	–	Predictive	control	...	10	

2.2.1	 Example: learning and compensating the steering actuator slow dynamics 10	
2.3	 Step	3	–	Motor	primitives	...	11	
2.4	 Step	4	–	Action	sequences...	12	
2.5	 Step	5	–	Reinforcement	Learning	...	12	

3	 Released public agent ... 12	

4	 Biblioraphical References ... 13	

5	 Appendix 1 - CRF steering actuator compensation ... 14	
5.1	 Baseline	control	...	14	
5.2	 Control	with	inverse	model	of	the	steering	actuator	...	15	
5.3	 Evaluation	...	15	

List of Diagrams

Figure 1: 	 Overview of agent evolution. The chart shows the number of QA tests versus the number of passed
test. ... 8	

Figure 2: 	 Development workflow. ... 9	
Figure 3: 	 Impulse response of the Renegade lateral dynamics with and without including the steering actuator

dynamics. ... 14	
Figure 4: 	 Receding horizon control based on inverse models (adapted from D2.3 Figure 12). 15	
Figure 5: 	 Comparison of baseline control to control with inverse model of the steering actuator (see text) .. 16	

Deliverable D5.3 – Evolved agent Grant Agreement No. 731593

Dreams4Cars Page 6 of 16

1 Evolution of the Agent sensorimotor system
This deliverable describes the evolution of the codriver agent. The document explains the process for the devel-
opment of the agent and how this workflow differs from the traditional engineering one. The quantification of
the system abilities is given separately in D5.4.

1.1 Agent implementations
In Dreams4Cars there are 4 different implementations of the agent:

1) The OpenDS simulator agent,

2) The CarMaker simulator agent,

3) The Jeep Renegade car agent,

4) The MIA car agent.

They differ mostly in the lowest-level control, because the dynamics of the 2 real vehicles (Jeep/MIA) and the 2
virtual vehicles (Carmaker model, OpenDS model) are different.

OpenDS. The OpenDS vehicle dynamics is relatively simple and so there was no need for learning forward and
inverse models. The OpenDS agent and the OpenDS environment are public and part of the Open Data Pilot (see
D5.5). Hence this deliverable also describes the public agent of D5.5.

CarMaker. The CarMaker vehicle model should be a virtual version of the Jeep Renegade (it was carefully para-
metrized with state-of-the-art vehicle dynamics identifications methods by CRF). However, it turned out being
slightly different than the real vehicle (the neural network forward models could clearly detect the difference).

Jeep Renegade. The Jeep Renegade is the CRF test vehicle. It was used for a variety of evaluation tests on the
CRF Safety Centre at relatively high speed (70 km/h).

MIA car. The MIA car is the DFKI test vehicle. It is endowed with a richer set of sensors and a better positioning
system and was used for developments as a platform complementary to the Renegade. The MIA car has different
engine, steering actuator and overall dynamics than the Renegade. The maximum speed of this vehicle is rela-
tively low and hence its dynamics is to some extent simpler (except for the non-linearities in the actuator sub-
systems, see D5.5).

1.2 Overview of the agent evolution
The initial codriver agent in Dreams4Cars was version 7.8, corresponding to the final version of the Adaptive
project. It was an entirely hand-coded agent that was intended to be used as a benchmark.

The final version of the codriver is 9.7. The most relevant changes from 7.8 to 9.7 involved the inclusion of
modules to enable learning methods (D3.2) and the functional architectural improvements described in D2.2.
The codriver 9.7 uses an algorithmic scaffold hosting neural network modules (it is not a black box monolithic
neural network). In addition to architectural improvements, between 7.8 and 9.7 there were also software mod-
ifications involving bug fixes, an updated interface with the host environment (v12.04) and several other im-
provements in the hand-coded scaffold of the agent.

The assessment and monitoring of the agent progress were carried within WP1.4 (see D1.4). To shortly recap, a
progressively increasing number of “standardized” tests have been arranged in the CarMaker environment and
used to quantify the agent performance.

The suite of tests is the following:

1. Speed Adaptation in Highway Scenario (Oval L1). The system tested at SAE Automation Level 1 (L1).
The system has to adapt speed according to speed limits and road curvature. The initial speed is 120
km/h.

2. Speed Adaptation in Test Track (Safety Centre L1). Same as above but in the (virtual) Safety Centre Test
Track, where narrower curves are present. The initial speed is 70 km/h.

Deliverable D5.3 – Evolved agent Grant Agreement No. 731593

Dreams4Cars Page 7 of 16

3. Lane Following in Highway Scenario (Oval). The lane keeping/following ability of the system is tested
at SAE Automation Level 2 (L2), including testing level transitions. The initial speed is 120 km/h.

4. Lane Following in Test Track (Safety Centre). Lane following abilities are also verified in Safety Centre
Test Track, with narrower curves (as low as 60 metres curvature radius).

5. Lane Change. The lane change ability is verified with standard Lane Change manoeuvre. Two stationary
vehicles are located one on the left lane and the other on the right lane 50 m behind in a way that the
agent must change at the gap between the two and then returns into the right lane. The initial speed is
90 km/h.

6. Overtake slow Vehicle. The slow vehicle scenario is used to verify the ability of the system to perform
an overtake manoeuvre. The vehicle is approaching a slower vehicle and is expected to overtake. The
initial speed is 120 km/h. The slow vehicle speed is 30 km/h.

7. Euro NCAP - Car Following (CCRm). According to test plan, also some Safety Assist scenarios related to
AEB (Autonomous Emergency Braking) C2C (Car-to-Car) system have been implemented as defined in
the Euro NCAP protocol. In the Car-to-Car Rear Moving (CCRm) scenario the host vehicle is approaching
a slower vehicle ahead and has to slow down in order to avoid collision. Between the different configu-
ration of the CCRm scenario, the worst case has been implemented with the vehicle arriving at 80 km/h
and the obstacle travelling at 20 km/h.

8. Euro NCAP - Stationary Obstacle (CCRs). In the Car-to-Car Rear Stationary (CCRs) Euro NCAP scenario
the vehicle has to stop in order to avoid collision with a front obstacle standing in the lane. The worst
case has been considered, with the vehicle entering the scenario at 80 km/h.

9. Euro NCAP - Front Vehicle Braking (CCRb). In Car-to-Car Rear Braking (CCRb) Euro NCAP scenario our
vehicle is following a front obstacle at constant speed of 50 km/h, then the front obstacle decelerates
with constant deceleration until it stops. This scenario has been implemented with -2 m/s2 constant
deceleration of the front obstacle.

10. Euro NCAP - Walking Pedestrian (CPLA). Euro NCAP defines tests for interactions with Vulnerable Road
Users (VRU), where the vehicle has to react with an Autonomous Emergency Braking (AEB) manoeuvre.
In the CPLA (Car-to-Pedestrian Longitudinal Adult) test a pedestrian is walking along centre of the lane
at 5 km/h (in same direction of the car). The incoming vehicle has to slow down in order to avoid collision
or reduce impact speed. This test has been implemented with the vehicle arriving at 50 km/h.

11. Euro NCAP - Crossing Pedestrian (CPNA). In the CPNA (Car-to-Pedestrian Nearside Adult) test a pedes-
trian unexpectedly crosses the road, at 5 km/h speed when the vehicle arrives. The vehicle must brake
in order to avoid collision or reduce impact speed. This test has been implemented with the vehicle
arriving at 50 km/h and 75% offset (side position of the pedestrian with respect to the vehicle axis).

12. Euro NCAP - Running Pedestrian (CPFA). In the CPFA (Car-to-Pedestrian Farside Adult) test a pedestrian
is crossing the road running at 8 km/h speed when the vehicle is arriving. The vehicle has to brake in
order to avoid collision or reduce impact speed. This test has been implemented with the vehicle arriving
at 50 km/h

13. Complex Highway Scenario. A highway scenario has been implemented in which the vehicle has to
travel for 10 km in the traffic flow on two lanes alternating car following, lane changes and overtakes in
order to travel safely as fast as possible. The traffic is generated and moved with stochastic characteris-
tics, and each traffic vehicle reacts to the other vehicles. In this way different situations are encountered
by the system that have not been specifically programmed.

The 13 tests above formed the test set used for monitoring the quality of the developed agent in D1.4. In addi-
tion, a 14th scenario was developed in the final part of the project, focusing on complex urban situations with
traffic generated in co-simulation with PVT-Vissim (a traffic simulator: https://vision-traffic.ptvgroup.com/en-
us/products/ptv-vissim/) as follows:

Deliverable D5.3 – Evolved agent Grant Agreement No. 731593

Dreams4Cars Page 8 of 16

14. Urban Scenario. A complementary urban scenario has been implemented. The host vehicle travels on
road with priority with two driving directions and crossings; speed limit is 50 km/h. Realistic traffic sim-
ulation is created with Vissim (in co-simulation with CarMaker).

Figure 1 gives a global assessment of the number of tests that were carried out and passed with successive
versions of the agent. One remark that is evident from the picture is the fact that, beginning with version 9.5
every new test that was introduced was passed by the agent (we do not count here a few failures that were due
to the ancillary environment).

Figure 1: Overview of agent evolution. The chart shows the number of QA tests versus the number of
passed test.

Commenting the progress in more depth we can make the following additional remarks. Version 8.8.3 was the
codriver version that, following a number of software modifications to adapt the original agent of AdaptIVe, was
the first that entered the assessment/monitoring programme. Between versions 8.8.3 and 9.0 the Carmaker
environment was also upgraded with the realistic parametrization of the Renegade test vehicle.

With version 9.0 we began testing the agent in realistic conditions (albeit in the simulation environment) in
terms of vehicle dynamics, actuator models, electronic horizon model, sensor models and the final interfaces.
The following versions marked the progressive implementation of neural network control, which is described in
following section 2.

2 Developmental workflow
This section describes the workflow used for development of the agent and compares it to more traditional
workflows with the goal of clarifying how the development process could be organized in comparison with more
traditional processes (and also which parts of the development process can be adopted individually without
needing the entire agent architecture).

The workflow follows the scheme given in D3.3 Figure 1, which is here reported for readers’ convenience (Figure
2).

Deliverable D5.3 – Evolved agent Grant Agreement No. 731593

Dreams4Cars Page 9 of 16

Figure 2: Development workflow.

2.1 Step 1 – Vehicle dynamics models
The process starts with the collection of data for learning the models of the vehicle dynamics. This step corre-
sponds to two steps in the traditional workflow:

a) Developing (an equation based) mathematical model of the vehicle dynamics;
b) Parametrizing the mathematical model.

These two steps are, instead, just one single step with the neural network approach, where the model and its
parametrization are learned simultaneously.

One important idea here is using neural networks with a structure biased toward the superposition of effects
that physical insight can give [1]. Hence while the role of a human modeller in the traditional case is describing
in minute details all important phenomena (and simplifying and deciding which one to neglect), with a physically
inspired neural network topology the role of a human designer is less critical and limited to specifying which are
the effects (forces) occurring in the system and which are the causes for these forces. This approach leads to
producing neural networks that are biased toward efficient learning of a particular class of models and still flex-
ible enough to accommodate unexpected/unthought effects.

Another important remark is that, when using physically biased neural network structures, the learning and
parametrization of a vehicle model is very efficient and can be carried out with little data (a neural network with
generic structure like, e.g., a multilayer perceptron would not be sample efficient and would require more train-
ing data; e.g., [2], D5.4).

Conversely parametrization at point b) often requires costly and long experiments, especially for tires. Further
discussion on these ideas can be found in papers [1]–[3] as well as in D3.3 section 3.1 in the appendix and in
D5.4.

Examples of the learning of forward models for the MIA car (longitudinal and lateral models) are given in the
Open Data pilot (D5.5).

Further development of the notion of forward model learning is constitued by a technique that allows learning
stochastic forward models, which is explained in D3.2 section 3.1.61. This makes the basis for robust adaptive
control at following developmental steps.

1 At the current time this is not explained in the public version (D3.3) of the methods in order not to anticipate the contents
of possible upcoming publications and also to reserve some IPR.

Deliverable D5.3 – Evolved agent Grant Agreement No. 731593

Dreams4Cars Page 10 of 16

We can observe that at step 1, inverse dynamics of the vehicle can also be learned directly from the collected
data (for example following the principles explained in [4]). This however turned out being far less efficient than
via episodic simulations (D3.2 section 3.2).

2.2 Step 2 – Predictive control
Step 2 is concerned with the synthesis of inverse models of the vehicle dynamics. Such inverse neural networks
receive future desired trajectories in input and produce the current (instantaneous) control commands.

Iteratively using the inverse network within a receding horizon scheme drives the plant onto that trajectory. An
inverse neural model is hence functionally equivalent to Model Predictive Control (MPC) in the traditional work-
flow.

However, there are substantial differences in the performance that can be expected.

MPC is usually based on linearized (linear time variant) vehicle dynamics models. This simplification is (almost
always) necessary to obtain a quadratic programming problem, which can be formally guaranteed to be conver-
gent. Non-linear MPC exists, but is much more computational expensive and its convergence is not universally
granted.

Conversely the inverse neural network is trained offline and works as a large lookup table inline with no issues
related to real time computation. Furthermore, the network can be trained on a generic forward model that
does not need to be linear. The network can be tested offline and, if given a particular explainable architecture,
some formal properties can also be guaranteed (e.g. BIBO stability can be assured with particular network ar-
chitectures). One can also seek for simplified networks (for example linear parametric controllers) that best
invert nonlinear plants.

Another aspect where inverse neural network go beyond the traditional approach is robust control. D3.2 section
3.2.3 explains the synthesis of robust inverse models exploiting the knowledge of the stochastic forward models
learned at step 1. It has to be remarked that robust MPC is still a research topic with several complex implications
[5]. Further discussion is given in D3.2 section 3.3.6.

Concerning the method for training the inverse models two options are available: a) from data (D3.2 section
3.2.1) or via episodic simulations (D3.2 section 3.2.2). Episodes can be conveniently generated via crossover and
mutation operator from recorded example trajectories. We have shown several advantages of episodic training
versus training on data. These include the generation of an inverse model that better cancels the forward dy-
namics as well as the ability to smooth the (controller) dynamics.

2.2.1 Example: learning and compensating the steering actuator slow dynamics

With the realistic simulation environment introduced with Codriver version 9.0, several problems arose (also
because of some software glitches that followed the conversion from the AdaptIVe agent). Many tests (about
50%) initially failed, as shown in Figure 1 for version 8.8.3 and 9.0.

Among these the major problem found was related to the steering actuator. In particular, the actuator used in
the Jeep Renegade was an adaptation of the device used in the standard production vehicles for lane keeping
assistance (LKA). It was not a device specifically designed to be fast and accurate (no resources were allocated
for the development of an ad-hoc device which would have been expensive on one side and not the central
focus of Dreams4Cars on the other side). The device has several limitations, which are functional for LKA but not
desirable for autonomous driving, among which a lowpass band (about 1Hz) and a dead zone in the straight
position.

As a consequence, the original control schemes that worked fine with faster vehicle dynamics (and still works
fine with the OpenDS and the MIA car) performed poorly and could not be accepted.

In order to collect a complete picture several delay compensation schemes were tested but did not work greatly
because the steering actuator cannot be modelled as a simple delay. As a collateral test we verified that, if the
actuator could be passed (i.e., if it had infinitely fast dynamics) the quality of the vehicle lateral control would
have been restored.

Deliverable D5.3 – Evolved agent Grant Agreement No. 731593

Dreams4Cars Page 11 of 16

Hence, with version 9.4 a neural network model of the steering actuator was trained (both the inverse and the
forward model). The inverse model was trained from data with the methods of D3.2 section 3.2.1 (i.e., the “sim-
ple way” without using episodic simulations).

The inverse model was used to rectify the actuator dynamics and worked fine, restoring the original controlla-
bility of the vehicle. This success story means that (albeit actuators with good dynamics are required for Auto-
mated Driving) there may be a trade-off where instead of using very precise actuators one can relax somewhat
the specifications as long as the actuator has dynamics that can be compensated with a neural network.

Appendix 1 - CRF steering actuator compensation excerpted from D5.4 gives more details on this case study (in
particular see Figure 5).

2.3 Step 3 – Motor primitives
This step corresponds to tactical-level trajectory planning where, given a short-term goal (for example change
the lateral position to the centre of the next lane) a trajectory that reaches the target position is produced (which
can be used for level 2 predictive control).

In traditional approaches this step is carried out with a variety of trajectory planning methods (for example, with
Optimal Control a trajectory that terminates in a desired state while satisfying pre-defined optimality criteria
can be produced).

In the approach of Dreams4Cars a neural network generating a trajectory given the target endpoint is trained
via episodic simulations exploiting the inverse/forward models of step 2 (D3.2 section 3.3). This network is also
referred as a generator of motor primitives, because it provides an atomic trajectory for any given goal.

The motor primitive network functionally works like any other trajectory planning methods (it returns a trajec-
tory given a goal position). It uses the learned models of the plant and its low-level controller just like, for exam-
ple, Optimal Control uses the mathematical model of the vehicle dynamics. However, as in step 2, the network
is trained offline, can be tested offline and works with no computational and convergence issues inline (see D3.2
section 3.3.6 for a comparison with Optimal Control). A further possibility is that the trajectory generator net-
work can be trained to be robust, i.e., to generate trajectories that minimize the mathematical expectation of
the final position error or any other metric (D3.2 section 3.3.2).

Despite the above features may look interesting, the most important feature of using a neural network for tra-
jectory generation is that it can be trained to predict the trajectory cost (or value) without actually predicting
the trajectory in details. In other words, networks that predict the values of actions without actually simulating
the actions can be obtained. These form the excitatory circuits necessary to compute the “salience” function
(D2.2 section 2.1.2). With some adaptation the same approach can be used for creating the inhibitory circuits.

Conversely, with a traditional approach, evaluating the value of one potential action necessarily requires to first
compute a trajectory. In other words, in order to evaluate the particular cost of one possible action (say change
lane) methods like e.g., Optimal Control need to solve the motion problem at the lowest level, with the compu-
tation of a detailed trajectory. Combining this with the fact that inline trajectory planning is computational ex-
pensive, limits the number of possible alternatives that can be evaluated. Neural networks permit dense action
priming, i.e., with almost continuous spectrum of possible actions among which to choose (the only way to
achieve such dense priming is with analytical approximate solutions of the trajectory planning problem that
provide analytical expressions for the trajectory costs). In turn dense action priming significantly contributes to
adaptive behaviours (for example finding a way to move in a partially occluded lane, or fitting in between lanes
in emergency situations).

The relation with the value functions computed in this way, and Reinforcement Learning is discussed in D3.2
section 3.3.7.2. We here remark that while in RL the value of actions is obtained by trial and error, here it is
obtained with a process that more closely is a synthesis process that build on the offline manipulation of learned
models.

Deliverable D5.3 – Evolved agent Grant Agreement No. 731593

Dreams4Cars Page 12 of 16

2.4 Step 4 – Action sequences
This step corresponds to longer-term trajectory planning. The Dreams4Cars agent (except for some demo fea-
tures) did not need to be trained for longer term sequences. Instead, a biasing mechanism implementing the
traffic rules (namely the conditions for a lane change) has been implemented following D2.2 section 2.2 (this
has allowed, for example to inhibit lane change in curves).

2.5 Step 5 – Reinforcement Learning
We used reinforcement learning in a way different from the mainstream examples that can be found in the
literature. This means that, instead of learning motor control from scratch (e.g., [6]) we focused on learning
some high-level behavioural parameters that influence the agent control. In particular we have demonstrated
the learning of safe speed choice in pedestrian scenarios.

The method that we use exploits the fine-tuned low-mod level behavioural stack trained in steps 1-4. In this way
the RL problem dimensionality is reduced (e.g., define a safe speed given the car and pedestrian states) and the
policy trained acts on a sandbox constituted by the codriver basic behaviours (which can veto any dangerous
requests). Learning some behavioural parameters for an agent that is already able to operate in the real world
also greatly contribute to solve the issue of transferring learned behaviours from simulations to the real world.

3 Released public agent
A public version of the Codriver agent is released within the Open Data pilot (D5.5). This version is the final
Codriver agent (9.7) in the OpenDS environment.

Deliverable D5.3 – Evolved agent Grant Agreement No. 731593

Dreams4Cars Page 13 of 16

4 Biblioraphical References
[1] M. Da Lio, D. Bortoluzzi, e G. P. Rosati Papini, «Modeling Longitudinal Vehicle Dynamics with Neural Networks», Veh. Syst.

Dyn., vol. in press.

[2] S. James, A. Sean, e D. L. Mauro, «Longitudinal Vehicle Dynamics: A Comparison of Physical and Data-Driven Models Under
Large-Scale Real-World Driving Conditions», Veh. Syst. Dyn., vol. (submitted).

[3] S. James e S. R. Anderson, «Linear System Identification of Longitudinal Vehicle Dynamics Versus Nonlinear Physical Model-
ling», in 2018 UKACC 12th International Conference on Control (CONTROL), Sheffield, 2018, pagg. 146–151.

[4] J. Porrill, P. Dean, e S. R. Anderson, «Adaptive filters and internal models: Multilevel description of cerebellar function», Neural
Netw., vol. 47, pagg. 134–149, 2012.

[5] A. Bemporad e M. Morari, «Robust model predictive control: A survey», in Robustness in identification and control, vol. 245,
A. Garulli e A. Tesi, A c. di London: Springer London, 1999, pagg. 207–226.

[6] D. Ha e J. Schmidhuber, «World Models», ArXiv180310122 Cs Stat, mar. 2018.

[7] P. Falcone, F. Borrelli, H. E. Tseng, J. Asgari, e D. Hrovat, «Linear time-varying model predictive control and its application to
active steering systems: Stability analysis and experimental validation», Int. J. Robust Nonlinear Control, vol. 18, n. 8, pagg.
862–875, mag. 2008.

[8] E. Kim, J. Kim, e M. Sunwoo, «Model predictive control strategy for smooth path tracking of autonomous vehicles with steering
actuator dynamics», Int. J. Automot. Technol., vol. 15, n. 7, pagg. 1155–1164, dic. 2014.

[9] R. Donà, G. P. Rosati Papini, M. Da Lio, e L. Zaccarian, «On the Stability and Robustness of HierarchicalVehicle Lateral Control
with Inverse/ForwardDynamics Quasi-Cancellation», IEEE Trans. Veh. Technol., vol. Accepted.

Deliverable D5.3 – Evolved agent Grant Agreement No. 731593

Dreams4Cars Page 14 of 16

5 Appendix 1 - CRF steering actuator compensation
Among the first challenges faced by Dreams4Cars the most urgent was related to the steering actuator of the
Jeep Renegade.

Often, traditional approaches to lateral vehicle control are based on models of the vehicle dynamics that assume
the steering wheel angle to be the control input. For example MPC typically assume bicycle-like lateral dynamics
with steering angle input [7]. However, the dynamics of the steering actuator may not be negligible [8]; and, on
the other hand, developing a precise steering actuator with negligible latency may be a costly endeavour.

In the particular case of Dreams4Cars, the actuator used for steering the Jeep Renegade was an adaptation of
the device used in the standard production vehicles for lane keeping assistance (LKA). It was not a device specif-
ically designed to be fast and accurate (no resources were allocated for the development of an ad-hoc device
which would have been expensive on one side and not the central focus of Dreams4Cars on the other side).

The device has several limitations, which are functional for LKA but not desirable for autonomous driving, among
which a lowpass band (about 1Hz) and a dead zone in the straight position. They have been already discussed in
D3.2, section 3.1.7. We recall here the degradation of the impulse response that the actuator causes on the
lateral vehicle dynamics: Figure 3, which is the same of D3.2 Figure 4, shows that the delay between steering
wheel angle and yaw rate, which would be approximately 100 ms without the steering actuator, becomes ~300-
350 ms when the actuator dynamics is counted. Furthermore, the lateral impulse response with the actuator is
significantly spread across a large interval of times.

Figure 3: Impulse response of the Renegade lateral dynamics with and without including the steering actu-
ator dynamics.

The schemes used for vehicle control have been introduced in D2.2 and better discussed in [9].

5.1 Baseline control
The baseline control scheme is based on the motor primitives generated by the codriver agent as follows. First
the motor primitive representing the rate of the trajectory curvature is computed at the current time, compen-
sating perception, computation and other delays. Second, the rate of curvature of the trajectory is transformed
into the steering rate via a speed dependent gain that accounts for the understeering gradient. Third, the steer-
ing rate is integrated to produce the requested steering angle sent to the actuator. In short: the vehicle is con-
trolled in steering rate with compensation of the codriver loop lags.

In paper [9] we have demonstrated that this schemes works fine as long as the gain and delay values used for
compensation are not very different from the real one (the paper establishes stability margins).

Deliverable D5.3 – Evolved agent Grant Agreement No. 731593

Dreams4Cars Page 15 of 16

In fact, this control scheme works fine with the OpenDS implementation (that uses a simple vehicle dynamic
model) and worked also fine with CarMaker as long as the steering actuator was assumed to be ideal (and the
vehicle dynamics was modelled realistically).

5.2 Control with inverse model of the steering actuator
The CarMaker implementation, stated with a realistic model of the vehicle, was upgraded with a realistic model
of the actuator later, at the end of 2018. When the model of the actuator was introduced (Figure 3), adjusting
for the increased lag in the baseline control scheme did not work satisfactorily, primarily because the delay of
the loop with the actuator is spread across a large interval of times and it is hence significantly different than a
simple lag.

Turning this problem into a case study, an inverse model for the steering actuator was thus developed. The
control scheme with the inverse model is shown in Figure 4. Instead of the curvature rate, it stars from the
trajectory curvature primitive 𝜅(𝑡), which is sampled at 𝑡% = 𝑖	Δ𝑇	 to generate the input vector of future curva-
ture values 𝜅% necessary for the neural network such as, e.g., D3.2 Figure 14. In this process it is possible to
account for, and compensate, the time elapsed from the perception of the data used for computing the motor
primitives (time 𝑡+ start of the motor primitive) and the current time (𝑡) where the control action is going to be
executed (i.e., compensating or the total delay of the loop of Figure 4.

The control pipeline is now as follows: First the curvature of the trajectory is transformed into the desired steer-
ing angle via the same speed dependent gain accounting for the understeering gradient. Second, the desired
steering angle is converted into a steering angle to be requested to the steering actuator via the steering actu-
ator inverse model, with the purpose of cancelling the steering actuator dynamics. This ideally restores the sit-
uation of the previous Carmaker model with realistic vehicle dynamics and ideal steering.

Figure 4: Receding horizon control based on inverse models (adapted from D2.3 Figure 12).

5.3 Evaluation
Figure 5 compares the baseline control with the control scheme using the inverse model of the steering actuator
(note that with reference to Figure 4 this cancels only the steering actuator dynamics, not the dynamics of the
complete plant including the vehicle).

The charts refer to the CarMaker Renegade complete dynamics model (vehicle with actuator). The simulation
refers to the CRF Safety Centre, for which the entrance to the first curve is shown: the lane curvature profile is
shown at the bottom.

The baseline used a lag compensation that was manually tuned for the case. Nonetheless the baseline (steering
rate with lag compensation) control scheme reveals oscillations that are due to the lags and spread response of
the actuator. These oscillations are triggered by entering the curve and are very low dampened (Figure 4, cen-
tre). They are more evident in the lateral position (top) that is an integrated effect. The vehicle wheels also
trespass the inner edge of the lane.

Deliverable D5.3 – Evolved agent Grant Agreement No. 731593

Dreams4Cars Page 16 of 16

The control with the steering actuator inverse model is definitely better. There are no oscillations and the tra-
jectory is smoother. The car moves towards the outer art of the lane before entering the curve and then towards
the inner part of the lane but without trespassing the edge. These lateral displacements are planned by the
codriver agent intentionally to smooth the curve. The steering wheel angle also follows much better the curva-
ture profile (centre and bottom). The agent behaviour is still not perfect (no inverse model of the vehicle is used
for example) but no oscillation due to the steering actuator delays are present.

Figure 5: Comparison of baseline control to control with inverse model of the steering actuator (see text)

