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EXECUTIVE SUMMARY 

This deliverable is the public version of D5.4 and documents data that is made publicly available at the end of 
the project. This includes two types of data: 

1) Experimental data (and examples of data use) from test vehicles. 
2) Simulation tools, simulation examples and simulation data. 

The provided material includes the licensed Codriver agent for hands-on testing in the virtual prototyping envi-
ronment OpenDS.  
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1 Introduction and Objectives 

1.1 Introduction 
According to the Data Management Plans (D7.5, D7.6 and D7.7) Dreams4Cars is committed to produce Open 
Research Data. 

This deliverable documents data that is made accessible at the end of the project. This includes essentially two 
types of data: 

3) Experimental data (and examples of data use) from test vehicles. 
4) Simulation tools, simulation examples and simulation data. 

Not all data collected by Dreams4Cars is disclosed now (by the end of the project) for several reasons that 
range from confidentiality of the OEM vehicle data to avoiding anticipated disclosure of materials that is going 
to be used for exploitation and/or upcoming publications. 

Hence, balancing the needs between producing Open Research Data and IPR protection, the following data are 
published on ZENODO https://zenodo.org/, at the domain for Dreams4Cars Horizon 2020 Project community 
https://zenodo.org/communities/dreams4cars/ (DOI: 10.5281/zenodo.3582054, 10.5281/zenodo.3582953). 
After the conclusion of the Dreams4Cars this repository will be maintained updated with any future follow-up 
related publications and to promote further developments of the D4C concepts. 

1.2 Experimental data from test vehicles 
Section 2 of this deliverable documents the experimental data collected by the MIA car test vehicle (DOI: 
10.5281/zenodo.3582953). We give datasets that are used for training the lateral and longitudinal vehicle 
forward models and example neural networks and training procedures that produce the forward models. 

This corresponds to providing examples for the public version of the final simulation system (D3.3, section 3.1). 

1.3 Simulation tools, examples and data 
Section 3 of this deliverable documents the OpenDS environment with the final version of the Codriver (DOI: 
10.5281/zenodo.3582054). Use of this software is regulated by a license agreement1. With this tool we also 
give example scenarios. 
Compared to other free simulators this suite provides: 

a) The Codriver agent. 
b) A toolchain for automatic generation of driving scenarios. 
c) Simulation based on (third-party) OpenDRIVE road description files. 
d) Simulation at fixed step size (faster-than-real-time and deterministic simulation). 
e) Support of two physics engines: Chrono and Bullet engine. 

The latter (e) allows the user to choose from a basic and an advanced vehicle dynamics simulation. The basic 
vehicle dynamics model (based on the Bullet engine) is highly efficient and more realistic than in other free 
simulators and may be sufficient for testing behaviours that do not require hard manoeuvres (preventive safe-
ty). A more complete vehicle dynamics model (based on the Chrono engine) can be configured for driving in 
emergency situations with hard manoeuvres (but note that to efficiently drive one vehicle, the matched in-
verse models must be trained and used: the current inverse dynamics matches the provide examples). 
Collectively, the data and tools provided in section 3 correspond to the public version of the agent described in 
D2.3. 

                                                             

1 OpenDS is open source. The Codriver library may be used under the conditions listed in the repository. 
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With the open simulation environment, many research and evaluation activities become possible to external 
researchers and industrial users, such as, e.g.: 
 

1) The Codriver agent integrated into OpenDS environment can be installed into driving simulators for 
various realistic studies on human-automated vehicle interactions. The fact that a very realistic and 
human like codriver agent is used constitutes a significant advancement in these kinds of studies. 

2) The Codriver agent in collaboration with the OpenDS environment can be used for Reinforcement 
Learning framework studies (i.e., learning high-level behavioural parameters) following the lines of 
D3.3. 

3) Developers of automated driving functions can use the agent as a benchmark. 
4) Researchers can use the environment to test different types of driving assistance functions.   

  
This list is of course non-exhaustive, because many other uses can be done with the released environment.  
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2 Experimental data from test vehicles 

2.1 Longitudinal dynamics of the MIA car 
Here we demonstrate the learning of forward models, following the methods explained in D3.3. The following 
table lists the data that were collected in 4 different test sessions that correspond to the test pans listed in 
section 2.1.1 of deliverable D5.1 (Vehicle Dynamics Tests for Learning Forward/Inverse models).  

The datasets are stored in ZENODO (DOI: 10.5281/zenodo.3582953) and summarized in Figure 1. Data are 
stored both in the form of HDF5 files and in the form of Wolfram’s .mx files. The datasets contain the relevant 
signals for the forward models, which have been extracted from the original ROS rosbags recorded during 
tests. More details concerning the datasets are given in the information sheets (the .docx files) included in the 
dataset folders.  

 

 

Figure 1: Dataset folder for the longitudinal dynamics of the MIA car. 

 

A Wolfram Mathematica notebook (“MIA Longitudinal Dynamics Neural Network model v2.nb”) is provided 
that opens both file types and guides step by step to the construction, training and evaluation of the vehicle 
forward model. It can be opened with the free Wolfram CDF player (https://www.wolfram.com/player/) and 
used as a guide to reproduce the same workflow in any other deep learning framework. For a live 
demonstration the notebook can be executed with Wolfram Mathematica (a free 15 days trial license is 
available https://www.wolfram.com/mathematica/trial/). The Mathematica version used for the example is 
12.0.  

Concerning the 4 datasets, it has to be noted that the data collected in the first two sessions (March and May 
2018) have been pre-processed to eliminate various measurement issues (including filtering with a 
Butterworth filter of order 3 and cut frequency of 1Hz). Hence the first two dataset have a different level of 
noise than the latter two, and might not represent the exact dynamics of the test vehicle. 

The forward/inverse models used in the project have been trained on the third dataset. The fourth dataset is 
on gravel surface and served to make comparisons with the asphalt surface of the third dataset. 
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Table 1: Test sessions for collection of data for the learning of forward models 

Dataset Date and place Contents (HDF5 and MX file formats) 

20180321-Jeddeloh-Test 2018/3/21 
Jeddeloh 
(gravel surface) 

36 start and stop manoeuvres (throttle 
steps followed by brake steps). 
 
Longitudinal velocity (filtered) 
Longitudinal acceleration (filtered) 
Throttle command 
Brake command 
 
N.B. data have been pre-processed to 
filter several issues. 

20180525-Bassum-Test 2018/5/25 
Bassum race track 
(asphalt surface) 

24 start and stop manoeuvres (throttle 
steps followed by brake steps). 
 
Longitudinal velocity (filtered) 
Longitudinal acceleration (filtered) 
Throttle command 
Brake command 
 
N.B. data have been pre-processed to 
filter several issues. 

20180929-ATC-Dynamic-Day1 2018/9/29 
Aldenhoven Testing Center 
 (asphalt surface) 

14 brake steps,  
14 throttle steps,  
7 random throttle input 
 
Longitudinal velocity (raw from odometer) 
Longitudinal acceleration (from IMU) 
Throttle command 
Brake command 

20190815-Jeddeloh-Dynamic 2019/8/15 
Jeddeloh  
(gravel surface) 

36 start and stop manoeuvres  
 
Longitudinal velocity (raw from odometer) 
Longitudinal acceleration (from IMU) 
Throttle command 
Brake command 

 

2.2 Lateral dynamics of the MIA car 
This section is like the previous one but for the lateral dynamics of the MIA car (with same DOI: 
10.5281/zenodo.3582953). The following table lists the data of 3 different test sessions. The first one is made 
of steering sine and steering step inputs used for training. The second one refers to a driving situation on the 
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same test track (ATC). The third one is on a different test track which has much narrower curves, as sharp as ~4 
m radius (the MIA is a minute car which can afford such small radiuses). 

The datasets are stored in ZENODO with same criteria of the previous section (Figure 2). 

A Wolfram Mathematica notebook (“MIA Lateral Dynamics Neural Network model v2.nb”) is provided that 
opens both file types and guides step by step to the construction, training and evaluation of the vehicle lateral 
forward model. 

 

 

Figure 2: Dataset folder for the Lateral dynamics of the MIA car. 

 

Table 2: Test sessions for collection of data for the learning of lateral forward models 

Dataset Date and place Contents (HDF5 and MX file formats) 

20180929-ATC-Dynamic-Day1 2018/9/29 
Aldenhoven Testing Center 
 (asphalt surface) 

12 sinusoidal sweep steering inputs with 
variable amplitude and frequency (from 
0.2 to 1.5 Hz). 
 6 steering step inputs with variable 
amplitude. 
 
Longitudinal velocity (raw from odometer) 
Steering wheel angle 
Yaw rate (from IMU) 

20180930-ATC-Dynamic-Day2 2018/9/30 
Aldenhoven Testing Center 
 (asphalt surface) 

2 general course recordings 
 
Longitudinal velocity (raw from odometer) 
Steering wheel angle 
Yaw rate (from IMU) 
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20190522-Bassum-LaneFollowing 2019/5/22 
Bassum race track 
(asphalt surface) 

15 general course recordings (with narrow 
curves) 
 
Longitudinal velocity (raw from odometer) 
Steering wheel angle 
Yaw rate (from IMU) 

 

3 Simulation Tools, Examples, and Data 
This chapter deals with open data generated by the simulation environment (DOI: 10.5281/zenodo.3582054).  

Section 3.1 explains how to use the automatized terrain and road generation toolchain in order to create 
complex driving situations for simulation with OpenDS.  

Section 3.2 presents selected examples which have been described in D5.1 – Test Plans, Methods, and Metrics 
as simulation fidelity tests. These examples have been created with the help of the toolchain described in 
Section 3.1.  

An overview of the simulation software implemented in Dreams4Cars, which has been made publicly available, 
is given in Section 3.3. 

3.1 Generation of Driving Scenarios 
In the following, we present a toolchain to create road networks aligned to realistic terrain models for the 
simulation with OpenDS, the central component of the Dreams4Cars simulation environment. The toolchain 
consists of several individual applications transforming a simple road description file (RDf) into a 3D terrain 
and road network model with semantic information about the road and lane geometry. Each application in the 
toolchain can be accessed from the command line, reading the output of its predecessor and providing input 
to its successor. Figure 3 depicts the complete toolchain including flow of data.  

 

 

Figure 3: Building blocks of the Terrain and Road Generation Toolchain 
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The complete road generation process, as shown in Figure 3, starts when a RDf is passed to the terrain 
generation component (Scene Generator), which extracts terrain and road network information from this file. 
Accordingly, a 16-bit heightmap (in RAW format) from the central heightmap repository is loaded to generate 
a 3D terrain model. On top of this model, roads are placed, deforming the initial terrain if necessary. The 
(deformed) terrain is saved in a simulator-readable format (Wavefront OBJ) and for each road segment a list of 
2D coordinates is generated representing the road reference line, which usually is equal to the centreline. Each 
coordinate list is filled with the absolute position data of the original reference line (approx. one coordinate 
per meter) and is forwarded to the geometry generation tools (cf. Figure 3). In the first geometry generation 
tool (PointList2Geometry Converter), all the point lists are processed sequentially by the Cornucopia algorithm 
to generate one set of curve primitives out of every point list. In the next tool (Geometry Generator), each set 
of curve primitives is converted into an OpenDRIVE geometry and, finally, the Road Generator puts together 
the OpenDRIVE geometries according to the initial road description by generating junctions to connect road 
sections whenever necessary. The result of the Road Generator is a road network description in OpenDRIVE 
format2, which matches the previously generated terrain. Both terrain and OpenDRIVE files are forwarded to 
the driving simulator (OpenDS) – together with simulation files – and the road generation process terminates. 
The simulation files are generated from templates and contain typical parameters and settings used to launch 
OpenDS with the generated terrain and OpenDRIVE files. Table 3 shows the location of the individual tools in 
the directory structure of the simulation environment. 

 

Tool/Resource Directory 

road description files (RDf) ./input/ 

automated toolchain scripts  ./input/{Linux_executables/, Windows_executables/} 

heightmaps ./heightmaps/ 

Scene Generator ./tools/SceneGenerator/SceneGenerator{.exe, .x86, .x86_64} 

PointList2Geometry Converter ./tools/PointList2Geometry/P2GConverter{.exe, } 

Geometry Generator ./tools/OpenDS_4.9/GeometryGenerator.jar 

Road Generator ./tools/OpenDS_4.9/RoadGenerator.jar 

OpenDS ./tools/OpenDS_4.9/OpenDS.jar 

output folder ./output/ 

Table 3: Overview of tools/resources and their location in the directory structure 

 

Linux and Windows scripts are available to execute the complete toolchain in order to automatically transform 
one of the sample RDfs (located in  ./input/) into a 3D model and an OpenDRIVE file by just one mouse click. 
The Linux and Windows scripts can be found in the folders ./input/Linux_executables/ and 
./input/Windows_executables/, respectively, named after the sample RDfs. Executing a script results in the 

                                                             
2 At the time of implementation OpenDRIVE Specification Format version 1.4H was the latest version. For further details 
visit: http://www.opendrive.org  
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generation of a 3D terrain model, an OpenDRIVE road description file, and five generic simulation files needed 
to run the scenario by OpenDS. The resulting files are stored in the OpenDS folder (where they are used for 
simulation) at the following locations: 

 3D terrain model: ./tools/OpenDS_4.9/assets/Scenes/<current timestamp>/ 

 OpenDRIVE file: ./tools/OpenDS_4.9/assets/DrivingTasks/Projects/<current timestamp>/ 

 Simulation files: ./tools/OpenDS_4.9/assets/DrivingTasks/Projects/<current timestamp>/ 

Furthermore, these files as well as all intermediate results (point lists, curve primitives, etc.) of the toolchain 
are copied to ./output/<current timestamp>/.  

Apart from executing the tools of the toolchain by one of the scripts, each tool can be executed individually as 
described below. 

The following sections provides additional details about the road description specification (Section 3.1.1), 
which is used to create RDfs , and the links of the road generation toolchain (Sections 3.1.2, 3.1.3, and 3.1.4), 
which processes a road description file. Section 3.1.5 is about the driving simulation software OpenDS, which is 
capable of loading the resulting terrain and road network. 

3.1.1 Road Description Specification 

This section introduces the specification used to define (almost) arbitrary road networks represented by 
human-readable XML files. The specification allows the definition of the underlying terrain structure as well as 
the exact pathway of the road geometry including lane layout, intersections, speed limits, and planned 
vehicular trajectories (the Codriver agent generates its own trajectory). Furthermore, trajectories of 
pedestrians can be defined relative to the road geometry. A full description of the specification can be 
obtained from the XML schema file, which can be found at ./input/roadDescription.xsd. 

The XML structure of a road description file is divided into four main parts: terrain description, road segment 
description, intersection description, and traffic description (cf. Listing 1), which are described below in more 
details. 

 

<roadDescription> 
    <terrain>...</terrain> 
    <segments>...</segments> 
    <intersections>...</intersections> 
    <traffic> 
        <codriver>...</codriver> 
        <vehicles>...</vehicles> 
        <pedestrians>...</pedestrians> 
    </traffic> 
</roadDescription> 

Listing 1: Road Description File (RDf) – overview 

 

3.1.1.1 Terrain Description 

In this part, terrain properties like extent, heightmap, and starting point of the road network must be 
specified. The heightmap can be created in advance with a tool of choice; however, we recommend using 
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L3DT3, a Windows application for generating terrain maps and textures. Heightmaps must be saved in 16-bit 
RAW format. Table 4 lists all available properties and Listing 2 gives an example of a terrain description.  

 

Property Type Unit Description 

extent/@length4 Float meter Length of terrain 

extent/@width Float meter Width of terrain 

extent/@maxHeight Float meter Difference between lowest and highest points 

heightmap/@path String  Path to heightmap file (RAW format) 

heightmap/@resolution Int  Resolution of heightmap (square) 

roadStartingPoint/@x Float meter x offset of starting point for road generation  

roadStartingPoint/@z Float meter z offset of starting point for road generation 

Table 4: Road Description File – terrain properties 

 

<terrain>  
    <extent length="500" width="500" maxHeight="15" /> 
    <heightMap path="heightmaps/heightmap_2048_001.raw" resolution="2048"/> 
    <roadStartingPoint x="100" z="400" /> 
</terrain> 

Listing 2: Road Description File – sample terrain description 

 

The initial road segment will be placed in the road starting point and the road generation will begin in x-
direction. 

3.1.1.2 Road Segment Description 

The second part of the road description specification contains a list of all road segments. Since road networks 
are represented in terms of trees, each road segment (node) needs to have a unique ID in order to define 
predecessor/successor relations (edges) to connect the root with the leaves. Figure 4 depicts a sample road 
tree consisting of five road segments (one root node, one inner node, and three leaf nodes) and one 
intersection. 

 

 

                                                             
3 Large 3D Terrain Generator, Bundysoft: http://www.bundysoft.com/L3DT/ 
4 XML elements are separated by “/“ (slash) and attributes are marked with “@” 
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Figure 4: Visual representation of a tree-like road description 

 

Except for the root (Figure 4, seg001), which is separately marked as “initial”, every segment has one 
predecessor and except for the leaves (Figure 4, seg012-seg014), every segment has one successor. The 
successor of a segment can be either another segment or an intersection (junction); intersections may have 
multiple successor segments, however, no succeeding intersection. In the example, seg001 is succeeded by 
seg002, which again is succeeded by intersect001. Be aware that the definition of segments must contain 
exactly one “initial” segment. 

The layout of each segment is defined by a sequence of geometries (curves and straights) which can have 
arbitrary curvature (angle) and length. Furthermore, each segment contains information about the number of 
lanes, the lane width, and the speed limit. All available properties of a road segment can be found in Table 5. 

 

Property Type Unit Description 

@id String  Unique ID of road segment 

@initial Boolean true/false Whether road segment is root 

geometries/geometry/@length Float meter Length of underlying geometry 

geometries/geometry/@curvature Float degree Curvature of geometry (straight = 0) 

successor/segment/@ref String  Reference of successor segment 

successor/intersection/@ref String  Reference of successor intersection 

laneLayout/noOfLanes Int  Number of lanes (1, 2, or 4)  

laneLayout/width Float meter Width of lane 

laneLayout/speedLimit Float km/h Speed limit in generation direction 

laneLayout/speedLimitOppositeDirection Float km/h Speed limit in opposite direction 

surface/friction Float  Road friction coefficient (optional) 

Table 5: Road Description File – road segment properties 
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The curvature attribute describes the angle (in degrees) of the curve of a “geometry” entry. For instance, a 
value of “-90” describes a geometry that is curved to the left at a right angle, the value “0” describes a straight 
geometry, and “20” describes a geometry curved to the right at 20 degrees. 

The length attribute defines the length (in meters) the given curve has. Changing the length of a curve can 
also be used to increase/decrease the curve radius. 

A sample road segment description (implementing seg001 of Figure 4) can be found in Listing 3. 

 

<segments> 
    <segment id="seg001" initial="true"> 
        <geometries> 
            <geometry length="50" curvature="0" /> 
            <geometry length="50" curvature="120" /> 
        </geometry> 
        <laneLayout> 
            <noOfLanes>2</noOfLanes> 
            <laneWidth>2.60</laneWidth> 
            <speedLimit>80</speedLimit> 
        </laneLayout> 
        <successor> 
            <segment ref="seg002" /> 
        </successor> 
    </segment> 
</segments> 

Listing 3: Road Description File – sample road segment description 

 

The <successor> element of segment seg002 in the previous example (cf. Figure 4) points to intersection 
intersect001 and the corresponding line in the road segment description will read as follows: <segment 
ref="intersect001" />. 

3.1.1.3 Intersection Description 

The intersection part is optional and may contain a list of intersections which must have a unique ID in order to 
be referenced as the successor of one of the road segments. Furthermore, each intersection must have two (in 
case of T-junctions) or three (in case of crossroads) successor segments (= outgoing segments) which must be 
defined in the road segments part (3.1.1.2). Every outgoing segment of an intersection must be assigned to 
one of the following directions: -90, 0, and 90. Each direction may not be assigned to more than one segment. 
-90/0/90 denotes that the outgoing segment is connected to the left/straight/right (from the perspective of 
the incoming road). In case of a crossroad, all four outgoing segments must be provided, in case of a T-
junction, one of the outgoing directions may be omitted. 

Table 6 represents the properties of an intersection. 

 

Property Type Unit Description 

@id String  Unique ID of intersection 

@type String  (not in use) 

outgoingSegment/@ref String  ID of outgoing road segment 

outgoingSegment/@degree String degree Connection direction (-90 = left, 0 = straight, 90 = right) 

Table 6: Road Description File – intersection properties 
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The previous example (cf. Figure 4) contains a four-way intersection (=crossroad) with one incoming road 
(seg002) and three outgoing roads. Segment seg012 is connected to the left (-90), seg013 straight ahead (0), 
and seg014 to the right (90). Listing 4 shows the corresponding intersection description of intersect001. 

 

<intersections> 
    <intersection id="intersect001" type="crossing"> 
        <outgoingSegment ref="seg012" degree="-90"/> 
        <outgoingSegment ref="seg013" degree="0"/> 
        <outgoingSegment ref="seg014" degree="90" />  
    </intersection> 
</intersections> 

Listing 4: Road Description File – sample intersection description 

 

3.1.1.4 Traffic Description 

This part of the road description specification describes the traffic present in a driving scenario, which includes 
computer-controlled vehicles and pedestrians as well as the vehicle controlled by the Codriver. In the following 
subsections, more details about these three types of traffic will be introduced.  

3.1.1.4.1 Codriver-controlled Vehicle 

The Codriver-controlled vehicle is the substantial element of the simulation. In this subsection, we 
demonstrate how to set up Codriver parameters like initial position and target position, intended pathways, 
and interaction with the simulation environment. 

The initial position of the Codriver-controlled vehicle must be specified by providing segment ID, lane position 
and offset from the starting point of the segment. The given segment ID must be equal to one of the segment 
IDs defined in Section 3.1.1.2. The lane position is given by a non-zero integer value according to Figure 5. 
Facing the direction of road creation, lanes left of the lane reference line have positive numbers (red lanes) 
and lanes right of the lane reference line have negative numbers (green lanes). If there is no lane offset (which 
is usually the case for segments generated by this toolchain), lane reference line and road reference line are 
equal. The enumeration of the lanes starts at the lane reference line in positive and negative direction. E.g. the 
position of the first lane to the right will be “-1”, while the position of the fourth lane to the left will be “4” (if it 
exists). The longitudinal offset must be given in meters from the beginning of the given segment and must not 
exceed the length of the segment.  

  

 

Figure 5: Lane positions of an OpenDRIVE road – with and without lane offset 

 

Optionally, preferred pathways can be specified for driving scenarios containing intersections. For this 
purpose, every vehicle provides a specific connection list which allows specifying a from/to relation for a given 
intersection. For instance, a vehicle can be set up to turn right at intersect001 from seg002 to seg014 (see 
Figure 4).  
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Furthermore, a target position – consisting of segment ID (e.g. seg014), lane position (e.g. -1) and offset (e.g. 
20) from the starting point of the segment – and a condition for termination of the simulation may be added. 
Termination conditions include the Codriver-controlled vehicle reaching its target position and/or reaching the 
end of any leaf vertex of the road tree. All available vehicle properties can be found in Table 7 and a sample 
Codriver description implementing the aforementioned values is shown in Listing 5. 

 

Property Type Unit Description 

startPosition/@segment String  ID of initial road segment of Codriver 

startPosition/@lane Int  Initial lane position of Codriver 

startPosition/@s Float meter Starting position relative to lane start 

connection/@intersectionID String  ID of intersection 

connection/@from String  ID of source road segment  

connection/@to String  ID of target road segment 

targetPosition/@segment String  ID of initial road segment of Codriver 

targetPosition/@lane Int  Initial lane position of Codriver 

targetPosition/@s Float meter Starting position relative to lane start 

terminateSimulation/ 

@onTargetPositionReached 
Boolean true/false Stop if Codriver reached target position 

terminateSimulation/ 

@onRoadEndReached 
Boolean true/false Stop if Codriver reached any road end 

Table 7: Road Description File – codriver properties 

 

<traffic> 
    <codriver> 
        <startPosition segment="seg001" lane="-1" s="10" /> 
        <preferredConnections> 
                <connection intersectionID="intersect001" from="seg002" to="seg014" /> 
            </preferredConnections> 
        <targetPosition segment="seg014" lane="-1" s="20" /> 
        <terminateSimulation onTargetPositionReached="true" onRoadEndReached="false" /> 
    </codriver> 
</traffic> 

Listing 5: Road Description File – sample Codriver description 

 

3.1.1.4.2 Vehicles 

Computer-controlled vehicles are optional. If present, a unique ID and a starting position (segment ID, lane 
position and longitudinal offset (cf. 3.1.1.4.1)) must be specified for each vehicle. Optionally, preferred 
pathways can be specified for driving scenarios containing intersections (similar to 3.1.1.4.1). Furthermore, an 
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individual speed limit may be set for each vehicle by the use of the optional <maxSpeed> element. All available 
vehicle properties can be found in Table 8 and a sample vehicle description is shown in Listing 6. 

 

Property Type Unit Description 

@id String  ID of vehicle 

startPosition/@segment String  ID of initial road segment of vehicle 

startPosition/@lane Int  Initial lane position of vehicle 

startPosition/@s Float meter Starting position relative to lane start 

connection/@intersectionID String  ID of intersection 

connection/@from String  ID of source road segment  

connection/@to String  ID of target road segment 

maxSpeed Float km/h Individual speed limit of vehicle  

Table 8: Road Description File – vehicle properties 

 

<traffic> 
    <vehicles> 
        <vehicle id="car01"> 
            <maxSpeed>50</maxSpeed> 
            <startPosition segment="seg014" lane="1" s="30" /> 
            <preferredConnections> 
                <connection intersectionID="intersect001" from="seg014" to="seg012" /> 
            </preferredConnections> 
        </vehicle> 
    <vehicles> 
</traffic> 

Listing 6: Road Description File – sample vehicle description 

3.1.1.4.3 Pedestrians 

Pedestrians are optional. If present, a unique ID, a start position, and a list of walking targets must be specified 
for each pedestrian. Optionally, one can specify whether the beginning of the pedestrian’s walk will depend on 
the position of the Codriver-controlled vehicle. Listing 7 shows a sample pedestrian definition. 

 

<traffic> 
    <pedestrians> 
        <pedestrian id="pedestrian01" > 
            <startPosition segment="seg002" lateralOffset="-5.3" s="0" /> 
            <targets> 
                <target lateralOffset="-5.3" s="30" speed="4.1" /> 
                <target lateralOffset="5.3" s="30" speed="2.8" /> 
                <target lateralOffset="5.3" s="60" speed="4.3" /> 
                <target lateralOffset="-5.3" s="60" speed="1.5" /> 
            </targets> 
            <triggerPosition segment="seg001" lane="-1" s="20" /> 
        </pedestrian> 
    </pedestrians> 
</traffic> 

Listing 7: Road Description File – sample pedestrian description 
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Besides the id attribute, which needs to be provided with a unique ID, the <startPosition> element and the 
<targets> element need also to be present. The <triggerPosition> element is optional.  

<startPosition> represents the initial position of the pedestrian provided by 2D coordinates (lateral offset 
lateralOffset and longitudinal offset s) relative to the given road segment (segment). All three attributes 
are required. Since the road segment of the start position serves as a reference system of the pedestrian’s 
position, making the pedestrian change between two road segments (i.e., two distinct coordinate systems) will 
not be possible. Due to this restriction, the indication of the segment has been omitted in the following 
<target> elements; the positional data implicitly refer to the segment given by <startPosition>. 

<targets> represents a list of 2D way points the pedestrian will process in the given order by walking to the 
given relative positions (lateralOffset and s) successively at the given speed (speed). At least one <target> 
sub-element with the required attributes lateralOffset, s, and speed must to be provided. 

<triggerPosition> allows to provide a relative position (segment, lateralOffset, and longitudinal offset 
s) which needs to be approached by the Codriver vehicle to make the pedestrian start walking towards the 
first target. If the optional <triggerPosition> element is present, segment, lane, and s must be provided; 
otherwise, the pedestrian will start walking immediately after the starting the simulation. In contrast to the 
<target> elements, the position of the trigger is not limited to the road segment given by <startPosition> 
and, thus, the segment attributes of <startPosition> and <triggerPosition> may differ.  

Table 9 shows types and units of all available attributes and sub-elements of a pedestrian element.  

 

Property Type Unit Description 

@id String  ID of pedestrian 

startPosition/@segment String  ID of initial road segment of pedestrian 

startPosition/@lateralOffset Float meter Initial lateral offset 

startPosition/@s Float meter Initial longitudinal offset 

targets/target/@lateralOffset Float meter lateral offset of target 

targets/target/@s Float meter longitudinal offset of target 

targets/target/@speed Float km/h speed towards target 

triggerPosition/@segment String  
Codriver trigger position (segment, lane 
and longitudinal offset) to start walking triggerPosition/@lane Int  

triggerPosition/@s Float meter 

Table 9: Road Description File – pedestrian properties 

 

 

Example. Figure 6 visualizes the example given in Listing 7. The initial position of the pedestrian pedestrian01 
is at the beginning (s=0) of road segment seg002. The initial lateral offset is 5.3 meters right of the road 
reference line (see green dot). 
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Figure 6: Sketch of the example described in Listing 7 

 

When the codriver vehicle hits the trigger, which is in the right lane (lane=-1) of road segment seg001 exactly 
20 meters (s=20) from the road reference point, the pedestrian will start walking to the first target (green 
dashed line). The first target is located 30 meters away at s=30. As the lateral offset of the target is also 5.3 
meters right of the road reference line, the pedestrian will walk parallel to the road at 4.1 km/h following the 
curve shape at an exact distance of 5.3 meters. 

After reaching the first target, the pedestrian will turn left to cross the road at a right angle and a speed of 2.8 
km/h. While crossing the road, the lateral offset will change from -5.3 to +5.3 and the longitudinal offset will 
remain at s=30. The pedestrian is now at the left of the road reference line. 

On the other side of the road, the pedestrian will continue walking parallel to the road at a speed of 4.3 km/h 
until s=60 has been reached where she will turn right to cross the road again.  

After reaching the final target, the pedestrian will rest there till the end of the simulation. 

3.1.1.5 Hints and Restrictions 

In this section, important information about the concepts explained above are clarified. Please follow these 
hints: 

• Any occurrence of segment must always refer to a valid road segment ID. 
• s must have positive values only; where s="0" always points to the beginning of a road. 
• Pedestrians: 

o lateralOffset: positive values (in meters) denote positions left of the road reference line; 
negative values denote positions right of the road reference line. 

o A pedestrian will walk from the previous target (or start position) to the current target by in-
terpolating the lateral and longitudinal offsets linearly. 

o The speed of a pedestrian will be constant while moving between two targets and can only be 
changed when a target has been reached. 

For the sake of completeness, we like to point out known limitations of the road description specification: 

• The course of the road cannot be specified very precisely as the underlying generation tool (Easy-
Roads3D Pro) tends to “optimize” the curvature of the road in an unpredictable manner, e.g. angular 
shaped curves will be rounded. 

• Junctions are restricted to either crossroads or T-junctions where the intersecting roads must be con-
nected exactly at a right angle. This is a requirement of the used road generation and terrain defor-
mation tool. 
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• Road networks can only be defined in a tree-like representation starting with an initial road segment 
(root), which is connected to all other segments by junctions. Thus, cyclic road networks cannot be de-
fined with this specification format. This limitation traces back to the underlying road generation tool 
as the precise course of a road cannot be predicted. Enormous efforts would be required to make sure 
that a road will exactly end at a pre-defined position. 

3.1.2 Terrain Generation 

This section introduces the terrain generation procedure, which is carried out by the Scene Generator 
(./tools/SceneGenerator/), a Unity application based on EasyRoads3D Pro. In the following we explain how 
terrain generation works and how the tool can be used. 

EasyRoads3D Pro is a road network editor extension for Unity5 which allows rapid generation of custom 3D 
road models. The user may start with a simple terrain using the Unity terrain generation tools or load a pre-
defined heightmap to generate a more complex terrain. On top of the terrain, reference points can be placed 
by mouse clicks, which will be connected by (curved) road segments in order to construct realistic roads as 
shown in Figure 7.  

 

   

Figure 7: EasyRoads3D Pro – simple road models 

 

Although the software is focused on manual road network generation by a GUI-based editor, EasyRoads3D Pro 
comes with an API, which is still under development but already allows executing many important functions of 
the application by Unity Scripts. API access is the fundamental requirement to automatize the road generation 
process including terrain generation from pre-defined heightmaps, placing intersections, and connecting them 
with road segments of arbitrary shape and width.  

Another impressive feature of EasyRoads3D Pro, which influenced the decision to utilize this software, is the 
automatic deformation of terrain whenever a new road segment is added to undulating terrain (cf. Figure 8). 
This allows the creation of negotiable roads with little superelevation and fair inclination angles. 

 

                                                             
5 https://unity.com/ 
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Figure 8: EasyRoads3D Pro – terrain deformation 

 

A limitation of EasyRoads3D Pro at the time of implementation was, that the latest version (3.0 beta) was 
lacking documentation and the provided source code was obfuscated. Furthermore, the software did not 
provide API functions for all the features of the manual editor (e.g. roundabouts could not be created, and 
generated road networks could not be exported to a 3D model format). Instead of exporting 3D models 
consisting of terrain and road, we therefore decided to export the terrain only and extract the absolute 2D 
coordinates of a road’s centreline to separate text files. The resulting coordinates of the road centrelines could 
be used as starting point to re-create road geometries and finally project them on top of the terrain model at a 
later stage. Here, we make it a condition that the road reference line of the geometries to be generated in the 
next section will be located at the same place on the terrain model where the centreline of the road generated 
by EasyRoads3D has been located before.  

Technically, the terrain generation process consists of the following steps. First, a road description file is 
loaded and processed by the Scene Generator in order to create a new terrain model given by a heightmap 
reference in the road description file. After all road segments specified in the RDf have been added to the 
terrain using EasyRoads3D Pro, the generation process is finalized by deforming the terrain in order to allow a 
smooth transition between terrain and road. The deformed terrain is provided with a texture and exported by 
Unity exporting routines to Wavefront (*.obj) format. Furthermore, the pathway of each road segment’s 
centreline is stored as 2D point list with absolute coordinates in a separate text file (named after the road 
segment ID) before the meshes of the road objects are discarded. The resulting point lists is used by the next 
link of the toolchain to compute geometries. 

A compiled version of the Scene Generator is available for Windows and Linux and can be executed from the 
command line using the following command:  

 

Windows:   $ SceneGenerator.exe -input <IF> -output <PLF> -terrain <TF> -display on|off 

Linux: $ SceneGenerator.x86_64 -input <IF> -output <PLF> -terrain <TF> -display on|off 

Where 

-input <IF> <IF> is the path to the input file (e.g. roadDescription.xml) 

-output <PLF> <PLF> is the output folder where the point lists will be stored 

-terrain <TF> <TF> is the output file path of the terrain model (OBJ format) 

-display on|off indicates whether the generation process will be interrupted to display the 
terrain model (“on”) or whether the application will be closed 
automatically after computation (“off”). 
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Executing the Scene Generator creates a terrain model (including *.obj, *.mtl and texture files) in the given 
output folder <TF> and a set of text files containing 2D point lists in the given output folder <PLF>. For each 
road segment contained in the road description, a text file is generated containing coordinates of the 
segment’s centreline. The fact that these text files are named after the corresponding road segment ID, 
highlights the necessity of providing unique road segment IDs. 

The following sample command can be used to run the Scene Generator under Windows in order to process 
the input file roadDescription.xml: 

$ SceneGenerator.exe -input roadDescription.xml -output output\pointlists\ -terrain 
output\obj\terrain.obj -display off 

 

3.1.3 Point List to Road Reference Line 

The following section explains the transformation of a 2D point list into a geometry that represents the 
reference line of a road. This geometry is described as a sequence of primitives of various types. We 
differentiate between the following primitives: 

• Line: a straight line with zero curvature 
• Arc: a curve with constant non-zero curvature  
• Spiral: a curve with linear change of curvature (also known as Euler spiral or clothoid) 

Disregarding intersections and elevation difference, an arbitrary road can be described by a sequence of the 
aforementioned primitives. According to the German road construction act, many turns in rural areas are in 
fact constructed using clothoidal parts between line and arc segments to provide a smooth steering phase 
when passing the lane section. Furthermore, the OpenDRIVE standard, which is supported by the driving 
simulation OpenDS, makes use of these three concepts to describe complex road shapes. 

 

 

Figure 9: Cornucopia – Fitting primitives to a list of points (colour code: line, arc, spiral) 
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For the computation of a precise reference line (consisting of line, arc, and spiral segments) from a given point 
list, the Cornucopia library6 turned out to be the ideal solution. This C++ library is an open-source project 
developed by Baran et al. [1] at the Massachusetts Institute of Technology. The algorithm is intended to 
approximate a mouse or tablet sketch stroke with a smooth continuous curve consisting of a set of lines, 
spirals, and arcs. The input can be derived from 2D coordinates and the resulting geometry concepts exactly 
meet the requirements of the OpenDRIVE road description format. 

The algorithm applies the following processing steps to a list of 2D points to end up with a fair curve 
approximating the input (cf. Figure 9a): 

1. Closed curve detection: determine whether the input curve is almost closed, and, if so, make it pre-
cisely closed. 

2. Corner detection: determine whether there are sharp corners and remove them. 
3. Resampling: to reduce the size of the problem and make the sampling more regular, resample the 

sketched stroke in a curvature-sensitive way. 
4. Primitive fitting: for every contiguous subsequence of samples, fit a candidate line, spiral, and arc. This 

results in an over-complete set of overlapping primitives (cf. Figure 9b). 
5. Graph construction: construct a weighted graph with the primitives as nodes and transitions between 

primitives as edges, such that weights denote the quality of the transition (cf. Figure 9c). To control 
the output of the algorithm, the costs for a line, an arc, and a spiral, for G0, G1, and G2 transitions, for 
inflections (points where the curvature changes sign), the approximation error cost and the penalty for 
short primitives have been chosen in order to get optimal results for road construction. Table 10 lists 
the selected cost setup (also known as “Accurate (G2)” pre-set) for all configurable parameters of the 
Cornucopia curve fitting algorithm. 

6. Shortest path: find an acceptable shortest path through the graph, validating transitions in the pro-
cess. This step picks out a high-quality segmentation of the input point list into curve primitives and 
transitions between them.  

7. Merging: enforce the continuity constraints on the chosen primitives by solving a nonlinear program 
(cf. Figure 9d). 

 

Parameter Min. Value Value Max. Value 

Line cost 0 7.5 20 

Arc cost 0 9 30 

Clothoid cost 0 15 50 

G0 cost 0 50 50 

G1 cost 0 50 50 

G2 cost 0 0 50 

Error cost 0 5 10 

Shortness cost 0 1 10 

Inflection cost 0 20 100 

Table 10: Cornucopia – primitive fitting costs (for reference, minimum and maximum values are provided) 

                                                             
6 https://code.google.com/archive/p/cornucopia-lib 
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In order to integrate the Cornucopia library, we extended the source code by a routine for reading a two-
dimensional point list from a given file and a routine for writing the resulting list of primitives to an output file. 
The output file consists of a sequence of line, arc, and spiral primitives as well as the initial position and 
orientation of the first primitive. Every subsequent primitive starts in the endpoint of its predecessor with the 
same orientation as its predecessor in that point. Line primitives only have a length property, arcs additionally 
have a curvature property, and spirals additionally have a second curvature property – one describing the 
curvature at the beginning and one at the end. Curvature values in between need to be interpolated linearly.  

A compiled version of the modified Cornucopia library is available for Windows and Linux under the name 
Point2Geometry Converter (./tools/PointList2Geometry/) and can be executed from the command line as 
follows: 

Windows:   $ P2GConverter.exe <inputFile> <outputFile> 

Linux: $ P2GConverter <inputFile> <outputFile> 

 

Where <inputFile> and <outputFile> represent the paths to the input and output files (optional). If these 
arguments are not provided, the application will expect a text file named input.txt and create a text file named 
output.txt in the same folder (overwriting existing files). 

The input list must comply with the pattern depicted in Listing 8 and consist of two or more points, which are 
represented as two-dimensional floating-point coordinates (x and y) separated by “;”. Furthermore, the list 
must provide exactly one point per line. A sample output of the Point2Geometry Converter is shown in Listing 
9. 

x1;y1 
x2;y2 
x3;y3 
  ⁞ 
xn;yn 

Listing 8: Point2Geometry Converter – format of the input list 

 

In the next link of the toolchain, the road reference lines of all involved road segments will be merged in order 
to create a valid OpenDRIVE file. 

3.1.4 Road Reference Lines to OpenDRIVE Road Description 

In this section we describe how the resulting road reference lines from the previous link of the toolchain are 
combined to a valid OpenDRIVE file. According to Figure 3, this conversion consists of two steps: 

1. Geometry Generator: a set of curve primitives is converted to a set of OpenDRIVE geometries 
2. Road Generator: a set of OpenDRIVE geometries is inserted into one OpenDRIVE template 

In the following, both steps are described in more detail. 

3.1.4.1 Geometry Generator 

In order to transform curve primitives (resulting from the Point2Geometry Converter) into OpenDRIVE 
geometries, all line, spiral, and arc primitives need to be complemented with additional data. Listing 9 shows 
some sample output of the Point2Geometry Converter after fitting a sequence of line → spiral → arc → 
spiral → line primitives to a list of 2D coordinates. The starting point and initial heading of each curve 
primitive is equal to the end point (and heading) of the preceding primitive – except for the first primitive, 
which begins at the coordinates and heading given in the <start> element.  
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<road> 
    <start x="-283.268" y="-201.359" hdg="3.321"/> 
    <geometries> 
        <line length="0.486" /> 
        <spiral length="3.174" curvStart="0.000" curvEnd="0.126" /> 
        <arc length="9.195" curvature="0.126" /> 
        <spiral length="3.174" curvStart="0.126" curvEnd="0.000" /> 
        <line length="0.486" /> 
    </geometries> 
</road> 

Listing 9: Sample output of the Point2Geometry Converter 

 

In more detail, the transformation of the XML representation of Listing 9 into OpenDRIVE format (cf. Listing 
10) requires the calculation of absolute position data (x, y, hdg) for each geometry. Furthermore, a consistent 
s-value representing the offset (in meters) from the beginning of the road reference line needs to be provided. 
Even though the data shown in Listing 9 and Listing 10 are equivalent, the OpenDRIVE representation (Listing 
10) is much more detailed due to redundancy. 

 

<planView> 
    <geometry s="0.0" x="-283.268" y="-201.359" hdg="3.321" length="0.486"> 
        <line/> 
    </geometry> 
    <geometry s="0.486" x="-283.746" y="-201.446" hdg="3.321" length="3.174"> 
        <spiral curvStart="0.000" curvEnd="0.126"/> 
    </geometry> 
    <geometry s="3.66" x="-286.819" y="-202.220" hdg="3.522" length="9.195"> 
        <arc curvature="0.126"/> 
    </geometry> 
    <geometry s="12.856" x="-291.764" y="-209.356" hdg="4.690" length="3.174"> 
        <spiral curvStart="0.126" curvEnd="0.000"/> 
    </geometry> 
    <geometry s="16.031" x="-291.409" y="-212.505" hdg="4.891" length="0.486"> 
        <line/> 
    </geometry> 
</planView> 

Listing 10: OpenDRIVE representation of the sample shown in Listing 9 

 

The tool needed to transform the output of the Point2Geometry Converter into OpenDRIVE format is called 
Geometry Generator and is available as executable *.jar file for Windows, Mac OS, and Linux. It can be found 
in ./tools/OpenDS_4.9/GeometryGenerator.jar and can be executed from the command line as follows:  

$ java -jar GeometryGenerator.jar <inputFile> <outputFile> <headless> 

 

Where 

<inputFile> is the path to the input file, e.g. geometryDescription.xml (optional). An XML schema 
for the input file can be found in the same folder (geometryDescription.xsd). 

<outputFile> is the path to the output file, e.g. openDrive.xodr (optional). 

<headless> indicates whether the window displaying the result will be suppressed (optional). 
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If these arguments are not provided, the application will expect a text file named geometryDescription.xml in 
the same folder and create a text file named openDrive.xodr in a timestamped subfolder of folder 
openDRIVEData. By default, the application will show the graphical result in a separate window (if not 
suppressed) as depicted in Figure 10. 

The following sample command can be used to run the Geometry Generator in order to process the input file 
geometryDescription.xml and generate the output file openDrive.xodr in headless mode (without visual 
output): 

$ java -jar GeometryGenerator.jar geometryDescription.xml openDrive.xodr headless 

 

Be aware that the implicit execution of the Geometry Generator is not part of the road network generation 
toolchain and the aforementioned command will not be contained in the provided shell scripts (*.bat and *.sh 
files). Instead, the Geometry Generator will be executed internally by the Road Generator (cf. 3.1.4.2). 

 

 
Figure 10: OpenDRIVE representation of a sample road segment (road reference line) 

 

3.1.4.2 Road Generator 

After transforming the reference line of each road segment into a separate file containing the OpenDRIVE 
representation thereof, the last tool of the chain, the Road Generator, can be used to merge all these files into 
one file, the OpenDRIVE road description. For this purpose, the initial road description file (cf. 3.1.1) must be 
processed a second time since all the information lost during the centre point export (e.g. road width, lane 
configuration, speed limit, etc.) must be added to the respective OpenDRIVE geometries in the final output 
file. Furthermore, the original road description contains information about how to connect road segments 
with each other – either using a direct connection between two adjacent roads (predecessor/successor 
relation) or using a custom-built intersection area (cf. Figure 11) in order to connect multiple road segments.  

 

 

Figure 11: OpenDRIVE representation of a custom-built intersection area 
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The Road Generator is available as executable *.jar file for Windows, Mac OS, and Linux. It can be found in 
./tools/OpenDS_4.9/RoadGenerator.jar and can be executed from the command line as follows:  

$ java -jar RoadGenerator.jar <inputFile> <timestamp> <headless> 

 

Where 

<inputFile> is the path to the input file (RDf), e.g. roadDescription.xml (optional). An XML 
schema for the input file can be found in the same folder (roadDescription.xsd). 
Furthermore, for each road segment that is defined in the RDf, a separate XML file 
(named after the corresponding road segment ID) containing the OpenDRIVE 
representation thereof must be provided in the main folder of OpenDS. 

<timestamp> is the timestamp of creation, e.g. 2019-11-22_13:45:20 (optional). This timestamp 
will be used to create and name a subfolder in the simulator’s project folder in order 
to save the generated driving task files (output). 

<headless> indicates whether the window displaying the resulting road network will be 
suppressed (optional). 

 

If these arguments are not provided, the application will expect a text file named roadDescription.xml in the 
same folder and create a subfolder named after the current timestamp in the simulator’s project folder 
(./tools/OpenDS_4.9/assets/DrivingTasks/Projects/). By default, the application will show the graphical result 
in a separate window (if not suppressed) as depicted in Figure 11. 

The following sample command can be used to run the Road Generator in order to process the input file 
roadDescription.xml and save the output files to a folder named 2019-11-22_13:45:20 in headless mode 
(without visual output): 

$ java -jar RoadGenerator.jar roadDescription.xml 2019-11-22_13:45:20 headless 

 

The Road Generator processes the given road description file and expects a separate XML file for each road 
segment that is contained in the road description. These XML files must be in the main folder of OpenDS and 
be named after the corresponding road segment ID. The content of each geometry file is first transformed into 
the OpenDRIVE geometry format by internally executing the Geometry Generator for each XML file. After that, 
the OpenDRIVE file (*.xodr) is generated from the resulting OpenDRIVE geometries and further information of 
the road description. Finally, the OpenDRIVE file is copied – together with five generic simulation files – to a 
timestamped subfolder of the simulator’s project folder ./tools/OpenDS_4.9/assets/DrivingTasks/Projects/. 
These simulation files are generated from templates and contain typical parameters and settings used to 
launch OpenDS with the generated terrain and OpenDRIVE files. The terrain file which is the output of the 
preceding terrain generation process (cf. 3.1.2) is expected to be available in a timestamped subfolder of 
./tools/OpenDS_4.9/assets/Scenes/ where both timestamps must be equal. The provided shell scripts (*.bat 
and *.sh files) ensure that the same timestamp is used throughout the whole generation process of a road 
network. 

3.1.5 OpenDS 

Finally, terrain, OpenDRIVE, and simulation files need to be processed by the driving simulator in order to 
create the final driving environment. When starting OpenDS, first, the terrain model is loaded, then, textured 
3D meshes are created according to the OpenDRIVE representation of the road network and projected on top 
of the terrain resulting in an exact match due to the terrain deformation applied at the beginning of the 
toolchain. Furthermore, the simulation files are processed by OpenDS, which facilitates the simulation of 
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dynamic scene objects (e.g. traffic, obstacles, vehicle pathways, etc.) and allows setting up interaction 
between them. 

The simulation parameters and settings (also known as “driving task”) are distributed over several files and 
consist of the following three concepts: scene, scenario, and interaction which are usually available as XML-
files (scene.xml, scenario.xml, and interaction.xml, respectively) and a file containing simulator settings 
(settings.xml). These concepts, their typical file names, and some details about their content are shown in 
Table 11. 

 

Driving Task Layer File Name Description 

Scene scene.xml (static) objects, geometries, reset points, sounds, images, lights, etc. 

Scenario scenario.xml weather, driving car, dynamic vehicles, pedestrians, cyclists, etc. 

Interaction interaction.xml trigger conditions, trigger actions (events) 

Settings settings.xml general settings, controller/key assignment, codriver settings, etc.  

Table 11: OpenDS – layers of a driving task 

 

All four driving task files are generated from templates and can be edited manually in the respective subfolder 
of ./tools/OpenDS_4.9/assets/DrivingTasks/Projects/ after the generation process has finished and before the 
simulation has started. If some parameter needs to be changed permanently, it might be wise to edit the 
corresponding template before starting the generation process. Templates can be found in folder 
./tools/OpenDS_4.9/assets/OpenDRIVE/templates/. For instance, one might want to deactivate logging of the 
codriver: this could be accomplished for each individual driving task by setting the <enableLog> element to 
false in the respective settings.xml or for all future driving tasks by doing so in the template 
emptySettingsFile.ftlx. 

OpenDS is available as executable *.jar file for Windows, Mac OS, and Linux. It can be found in 
./tools/OpenDS_4.9/OpenDS.jar and can be executed from the command line as follows:  

$ java -jar OpenDS.jar <inputFile> 

 

Where <inputFile> is the path to the project file (optional). If this argument is not provided, the application 
will prompt a selection screen – given that no project file has been specified in the startProperties.properties 
file in the simulator’s main folder. A project file consists of pointers to the OpenDRIVE file and the four driving 
task files described in Table 11. XML schemas for the validation of these five XML files can be found in 
./tools/OpenDS_4.9/assets/DrivingTasks/Schema/. 

The following sample command can be used to run OpenDS with a pre-selected driving task file: 

$ java -jar OpenDS.jar assets/DrivingTasks/Projects/track1/track1.xml 

 

The road description specification allows placing any number of computer-controlled vehicles at arbitrary 
positions on the road. Every vehicle will continuously be driving at its individual maximum speed (without 
exceeding the general speed limit) following the lane it has initially been assigned to until a bifurcation is 
reached. In order to resolve ambiguity in pathways, a list of preferred turnings (when approaching to an 
intersection) can be specified for each vehicle – including the Codriver-controlled car. Figure 12 depicts the 
road example from the previous steps rendered by OpenDS including textured meshes and dynamic scene 
objects (one Codriver- and two computer-controlled vehicles) interacting with the road network. Each 
computer-controlled vehicle is set up to follow an individual target point (cf. Figure 12, green dots) which is 
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moving five meters ahead of the vehicle pivot along the lateral lane centre. Analogously, the trajectory of the 
Codriver-controlled vehicle (visualized by red and yellow dots in Figure 12) can be computed.  

 

 

Figure 12: OpenDRIVE representation of a sample road segment (textured) with dynamic scene objects 

 

Figure 13 depicts a more complex terrain and road network model created by the automatized road 
generation toolchain. The resulting 3D models (terrain, road segments, and junctions) have been generated 
without human interaction and solely by interpreting the road description specification. As the screenshots 
demonstrate, arbitrary slopes and junctions in undulating terrain can be generated.   

 

   
 

 
Figure 13: OpenDS simulation of an automatically generated road network (the inset on the top left fram is a 

representation of the codriver motor space (or motor cortex). 
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Every simulation that has been triggered by the automatized road generation toolchain starts OpenDS with the 
codriver enabled. If the codriver needs to be disabled (e.g. in order to explore the environment by a human 
driver), the respective parameter (<enableConnection>) can be set to false in the corresponding settings.xml. 
For permanent deactivation the template (emptySettingsFile.ftlx) could be edited instead. While the codriver is 
activated, pressing “M” will show a graphical representation of the current motor cortex state (cf. Figure 13, 
upper left). 

 

3.2 Examples of Driving Scenarios 
The simulation files of the following sample scenarios (and some more) can be found in the project folder of 
the simulation environment (./tools/OpenDS_4.9/assets/DrivingTasks/Projects/). These can be opened with 
the provided simulation environment for instant simulation of the respective scenario. For most of the 
scenarios, a road description file (RDf) is available which has been used to generate driving scenarios from 
scratch. These files can be found in the input folder of the simulation environment (./input/) and be used to re-
generate terrain, road network, and the aforementioned driving scenario files. This step is optional, as ready-
to-use simulation files are provided for each of the examples. Each example contains a table referring to the 
respective generation (RDf), simulation, and log files. 

The first two sample scenarios (3.2.1 and 3.2.2) demonstrate the features of the automatized terrain and road 
generation toolchain and the integration of the Chrono physics engine, respectively. The other scenarios 
implement the situations used for simulation fidelity tests described in Chapter 5 of D5.1 – Test Plans, 
Methods, and Metrics. 

In the folder ./tools/OpenDS_4.9/ a file named startProperties.properties can be found. This file is processed 
every time the simulator is started. Editing this file (by uncommenting the respective line) allows to set up one 
of the scenarios presented in the following sections. The simulation of the selected scenario can be launched 
by executing ./tools/OpenDS_4.9/OpenDS.jar. 

3.2.1 Generated Terrain and Road Network Scenario 

This scenario demonstrates the basic features of the automatized terrain and road generation toolchain. From 
a single road network description file, the user can generate a driving scenario including terrain, crossroads, 
traffic, and pedestrians. Traffic and pedestrians will follow a pre-defined pathway interacting with the 
Codriver-controlled car. The Bullet engine is used to render physics. Figure 14 (left) shows the layout of the 
road network, highlighting the positions of the traffic participants, which are shown in Figure 14 and are: 
Codriver-controlled vehicle (arrow), pedestrian (circle), and traffic vehicle (rectangle). 

 

   
Figure 14: Generated scenario including terrain, crossroads, traffic, and pedestrians 
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It is possible to disable the codriver. For this, the codriver settings, which can be found in the corresponding 
settings.xml file, must be adjusted as shown in Listing 11. After disabling the codriver and restarting OpenDS, 
the vehicle can be controlled by keyboard, steering wheel, and pedals. 

 

<codriver> 
    <enableConnection>false</enableConnection> 
</codriver> 

Listing 11: Disabling the codriver 

 

Table 12 provides the location of the corresponding road description file, the simulation file, and the log data 
which is produced when running the scenario. 

 

Data Location 

Generation ./input/terrainTest.xml 

Simulation ./tools/OpenDS_4.9/assets/DrivingTasks/Projects/TerrainTest/terrainTest.xml 

 Results ./tools/OpenDS_4.9/log/TerrainTest/ 

Table 12: Terrain example – Location of description files and resulting data  

 

3.2.2 Chrono Scenario 

The terrain and road network used in this scenario is an exact copy of the one in the previous scenario. That is 
why the generation script (cf. Table 13) is the same. The only difference is the use of the Chrono engine for 
physics rendering. The user can experience the differences between both engines by driving the steering car 
manually (instead of having it controlled by the codriver). Differences in the simulation files can be checked 
out by comparing them. 

In general, every scenario can be run with the Chrono physics engine by specifying what part of the terrain to 
render by the Chrono engine and what Chrono-approved vehicle to use, no matter whether it will be 
controlled by the Codriver7 or a human. While the Bullet physics engine can compute collisions of any two 
scene objects, the Chrono engine is limited to calculate the collision of two specific objects: terrain and 
vehicle. Thus, the user can select which scene object to use as “terrain” and which scene object to use as 
“vehicle”. Since the collision computation can be very expensive, a terrain as simple as possible should be 
used. The terrain must be available in Wavefront (*.obj) format and must be defined in the scene.xml (as 
usual). Furthermore, it must be referenced in the settings.xml by its unique ID, as shown in Listing 12. In this 
way the editor can make sure that only those surface triangles of a given track that are reachable by the car 
will be added to the Chrono engine.  

                                                             
7 However, please note that the Codriver installation in OpenDS uses a generic (albeit adaptive) inverse model control 
that cannot not be perfectly matched to all possible Chrono-vehicle dynamics.  

In the real vehicles and in the CarMaker environment used for other parts of Dreams4Cars the inverse models were 
tailored to the exact vehicle dynamics (e.g., D5.4). To carry out studies concerning control of vehicle with focus on the real 
dynamics and actuator lags, tailored inverse model would be required. 
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<chrono> 
    <terrainModel ref="terrain_45" /> 
</chrono> 

Listing 12: Adding terrain to Chrono physics simulation 

 

The vehicle for Chrono can be specified in the scene.xml in the usual way. OpenDS can detect whether a Bullet 
or Chrono vehicle has been specified and load the respective physics engine. If a Bullet vehicle has been given, 
Chrono will not be started – even if a terrain has been specified as shown in Listing 12. Conversely, if a Chrono 
vehicle has been specified without selecting a terrain, the vehicle will be simulated in Chrono, however, with 
no terrain to drive on the vehicle will fall infinitely. Currently, only one vehicle (included in the vehicle 
selection of OpenDS) has been prepared for the use with Chrono:  

Models/Cars/drivingCars/CitroenC4_Chrono/Car.scene 

If this vehicle is used, more than 100 vehicle parameters can be adjusted, by modifying the *.json files in the 
subfolders of: assets/Chrono/vehicle/ 

Table 13 provides the location where to find the corresponding road description file and the simulation file. 
The generation file (RDf) is the same as in the previous example since the only difference is the use of a 
Chrono vehicle. After the generation of the terrain and road network, the editor must replace the Bullet 
vehicle (default) by a Chrono vehicle. This replacement has been done in the provided simulation project. 

 

Data Location 

Generation ./input/terrainTest.xml 

Simulation ./tools/OpenDS_4.9/assets/DrivingTasks/Projects/ChronoTest/chronoTest.xml 

 Results (not run by codriver) 

Table 13: Chrono example – Location of description files 

3.2.3 Speed Adaptation 

In this test, the Codriver-controlled car will be driven on a two-lane road. The main goal is to test the 
longitudinal inverse model and low-level control. This includes testing speed limit adaptation. The test is 
carried out both on a straight and a curvy road. 

3.2.3.1 Straight Road 

 

       
Figure 15: Speed adaptation on a straight road 
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The Codriver-controlled car is placed at the beginning of a straight two-lane road 4 km long. Every 500 to 1000 
meters a new speed limit – implemented in the semantic annotation of the road (OpenDRIVE) – appears. The 
road signs depicted in Figure 15 are used as visual markers (for the human viewer) only. The Codriver receives 
the speed limit from the map. The speed limits are in the following order: 30, 80, 50, 100, 40, STOP.  

Table 14 provides the location of the corresponding road description file, the simulation file, and the log data 
which is produced when running the scenario. 

 

Data Location 

Generation ./input/speedAdaptationTest1.xml 

Simulation ./tools/OpenDS_4.9/assets/DrivingTasks/Projects/SpeedAdaptationTest1/ 

speedAdaptationTest1.xml 

 
Results ./tools/OpenDS_4.9/log/SpeedAdaptationTest1/ 

Table 14: Speed adaptation example 1 – Location of description files and resulting data  

 

3.2.3.2 Curvy Road 

The Codriver is placed at the beginning of a curvy two-lane road of 4 km length. Again, every 500 to 1000 
meters a new (OpenDRIVE) speed limit appears. The corresponding scenario is shown in Figure 16. The speed 
limits are in the following order: 30, 80, 50, 100, 40, STOP.  

 

     
Figure 16: Speed adaptation on a curvy road  

 

In curvy roads the speed choice of the Codriver depends on the speed limits, but, also on the curvature of the 
road according to [2], [3]. Thus, the Codriver might choose to drive at a lower velocity than the one given by 
the speed limit. 

Table 15 provides the location of the corresponding road description file, the simulation file, and the log data 
which is produced when running the scenario. 

 

Data Location 

Generation ./input/speedAdaptationTest2.xml 

Simulation ./tools/OpenDS_4.9/assets/DrivingTasks/Projects/SpeedAdaptationTest2/ 

speedAdaptationTest2.xml 

 
Results ./tools/OpenDS_4.9/log/SpeedAdaptationTest2/ 

Table 15: Speed adaptation example 2 – Location of description files and resulting data  
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3.2.4 Car Following 

In this test, the Codriver-controlled car follows a leading vehicle on a one-lane road (in order to prevent the 
Codriver from overtaking). The main goal is to test the car following behaviour in response to different 
behaviours of the leading vehicle. A particular case is approaching a slower or stationary object. The leading 
car is set up to change velocity in an unpredictable way. Due to sudden large acceleration phases of the 
leading car, there are several approaches of the Codriver-controlled car to the leading car. The test is carried 
out using both a straight and a curvy road scenario. 

3.2.4.1 Straight Road 

The Codriver-controlled car is placed at the beginning of a straight one-lane road 4 km long with different 
speed limits. The Codriver car is instructed to ignore the speed limits and to drive at 100 km/h whenever 
possible. Since the leading vehicle obeys the speed limits exactly, the Codriver-controlled car must adjust its 
speed in order not to collide. 

 

       
Figure 17: Car following on a straight road  

 

Table 16 provides the location of the corresponding road description file, the simulation file, and the log data 
which is produced when running the scenario. 

 

Data Location 

Generation ./input/carFollowingTest1.xml 

Simulation ./tools/OpenDS_4.9/assets/DrivingTasks/Projects/CarFollowingTest1/carFollowingTest1.xml 

 Results ./tools/OpenDS_4.9/log/CarFollowingTest1/ 

Table 16: Car following example 1 – Location of description files and resulting data  

 

3.2.4.2 Curvy Road 

In this version, the road is curvy. Apart from this, the setup is exactly the same as described for the straight 
road (cf. 3.2.4.1). The scenario is shown in Figure 18. While the Codriver ignores the speed limits, it still 
complies with the speed choice in curves mentioned above, 

Table 17 provides the location of the corresponding road description file, the simulation file, and the log data 
which is produced when running the scenario. 
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Figure 18: Car following on a curvy road  

 

Data Location 

Generation ./input/carFollowingTest2.xml 

Simulation ./tools/OpenDS_4.9/assets/DrivingTasks/Projects/CarFollowingTest2/carFollowingTest2.xml 

 Results ./tools/OpenDS_4.9/log/CarFollowingTest2/ 

Table 17: Car following example 2 – Location of description files and resulting data 

 

3.2.5 Pedestrian Approaching 

In this test the Codriver-controlled car drives on a straight road. The goal is to test the adaptation of speed in a 
pedestrian crossing situation. In further tests, the collision avoidance by changing lanes will additionally be 
examined. Once a pedestrian is approaching the road, the Codriver should open a temporal gap (and/or 
laterally deviate from the lane) to avoid the pedestrian.  

3.2.5.1 Single-lane Road 

The single-lane road scenario has been selected in order to test the adaptation of speed exclusively. The car is 
set up to follow the lane at 50 km/h. Along the road, three pedestrian-crossing events (one every 500 meters) 
can be found. For the human viewer, the crossing positions are visually marked by a pair of pedestrian-crossing 
signs. These signs as well as the intended crossing positions are not forwarded to the Codriver. Figure 19 (left) 
shows a sketch of the track, including the Codriver-controlled vehicle (arrow) and the three pedestrians 
(circles). The other images of Figure 19 show the three pedestrians. 

 

       
Figure 19: Pedestrian approaching on a one-lane road  

 

The first pedestrian has been set up to cross the road from left to right at a constant speed of 4 km/h without 
stopping. She arrives at the road centre exactly at the same time as the Codriver-controlled car would arrive 
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(cf. Figure 19, image 2). The Codriver must slow down and eventually stop the car. When the pedestrian is out 
of the way, the Codriver resumes driving. 

In the second situation, the pedestrian has been set up to cross the road from right to left at a constant speed 
of 4 km/h. The timing is exactly as before; however, the pedestrian stops walking suddenly when arriving at 
the sidewalk (cf. Figure 19, image 3). At that precise moment, the Codriver was already going stops the vehicle, 
but after a while, the Codriver resumes driving and passes the waiting pedestrian with caution. 

The third pedestrian has been set up to cross the road from left to right at a constant speed of 4 km/h without 
stopping. Since the pedestrian arrives too late at the intersection point (cf. Figure 19, image 4), the Codriver-
controlled car goes on driving without reducing speed.  

Table 18 provides the location of the corresponding road description file, the simulation file, and the log data 
which is produced when running the scenario. 

 

Data Location 

Generation ./input/pedestrianApproachingTest1.xml 

Simulation ./tools/OpenDS_4.9/assets/DrivingTasks/Projects/PedestrianApproachingTest1/ 
pedestrianApproachingTest1.xml 

 Results ./tools/OpenDS_4.9/log/PedestrianApproachingTest1/ 

Table 18: Pedestrian approaching example 1 – Location of description files and resulting data 

 

3.2.5.2 Two-lane Road 

The Codriver-controlled car is placed at the beginning of a straight two-lane road of 2 km length. The 
additional lane to the left provides space for lateral evasive manoeuvres. The car is set up to follow the right 
lane at 50 km/h. Along the road, four pedestrian-crossing events (one every 500 meters) can be found. Figure 
20 (left) shows a sketch of the track including the Codriver-controlled vehicle (arrow) and the four pedestrians 
(circles). The other images of Figure 20 show the car view of the four pedestrians. 

 

         
Figure 20: Pedestrian approaching on a two-lane road 

 

The first pedestrian has been set up to cross the road from left to right at a constant speed of 4 km/h without 
stopping. She arrives at the centre of the right lane exactly at the same time the Codriver-controlled car would 
arrive (cf. Figure 20, image 2). The situation is an copy of the first pedestrian situation described in 3.2.5.1 
except for the additional lane to the left. The reaction of the Codriver in this situation is reducing speed and 
using the left lane for collision avoidance – as one can see in the planned trajectory visualized by pink dots in 
Figure 20 (image 2). After passing the pedestrian, the Codriver changes back to the right lane and continues 
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driving. This situation, but with standing pedestrian on the lane side, has been reproduced with the real 
vehicle MIA car (see D5.4). 

In the second situation, the pedestrian has been set up to cross the road from right to left at a constant speed 
of 4 km/h without stopping. Since the pedestrian is already leaving the lane centre when the Codriver-
controlled car approaches to the intersection point, no further action of the Codriver is required (cf. Figure 20, 
image 3). 

The setup of situation 3 is an copy of situation 2. However, the pedestrian suddenly stops walking in the centre 
of the right lane (cf. Figure 20, image 4). The Codriver, which intended to pass behind the pedestrian (as in 
situation 2), must adapt to the change and a lane change to the left is initiated – as indicated by the planned 
trajectory. After passing the pedestrian (with reduced speed), the Codriver changes back to the right lane and 
continues driving. 

The fourth pedestrian has been set up to cross the road from left to right at a constant speed of 4 km/h 
without stopping. Since the pedestrian arrives too late at the intersection point (cf. Figure 20, image 5), the 
Codriver-controlled car goes on driving without reducing speed.  

Table 19 provides the location of the corresponding road description file, the simulation file, and the log data 
which is produced when running the scenario. 

 

Data Location 

Generation ./input/pedestrianApproachingTest2.xml 

Simulation ./tools/OpenDS_4.9/assets/DrivingTasks/Projects/PedestrianApproachingTest2/ 
pedestrianApproachingTest2.xml 

 Results ./tools/OpenDS_4.9/log/PedestrianApproachingTest2/ 

Table 19: Pedestrian approaching example 2 – Location of description files and resulting data 

 

3.2.5.3 Two-lane Road with Oncoming Traffic 

The Codriver-controlled car is placed at the beginning of a straight two-lane road of 2 km length. The car is set 
up to follow the right lane at 50 km/h. After 500 meters of driving a pedestrian crossing situation including 
oncoming traffic is found. 

 

         
Figure 21: Pedestrian approaching on a two-lane road with oncoming traffic 

 

The pedestrian has been set up to cross the road from left to right at a constant speed of 4 km/h without 
stopping. The pedestrian arrives at the centre of the right lane exactly at the same time as the Codriver-
controlled car would arrive (cf. Figure 21, image 2). Since the situation is similar to the first pedestrian 
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situation described in 3.2.5.2, the Codriver plans to pass behind the pedestrian using the left lane (cf. planned 
trajectory in Figure 21, image 3). Exactly in this moment, the oncoming car (which is driving at 50 km/h) enters 
the detection range of the simulate sensors of the Codriver. Hence, changing the lane will avoid a collision with 
the pedestrian, but not with the car. Thus, the Codriver decides to stay in the lane and stops the vehicle (cf. 
planned trajectory in Figure 21, image 4). As soon as the pedestrian is out of the way, the Codriver resumes 
driving (cf. Figure 21, image 5). 

Table 20 provides the location of the corresponding road description file, the simulation file, and the log data 
which is produced when running the scenario. 

 

Data Location 

Generation ./input/pedestrianApproachingTest3.xml 

Simulation ./tools/OpenDS_4.9/assets/DrivingTasks/Projects/PedestrianApproachingTest3/ 
pedestrianApproachingTest3.xml 

 Results ./tools/OpenDS_4.9/log/PedestrianApproachingTest3/ 

Table 20: Pedestrian approaching example 3 – Location of description files and resulting data 

 

3.2.6 Lane Following 

In this test the Codriver-controlled car drives on a curvy road. The main goal is to test the inverse model and 
low-level control for lateral control. 

3.2.6.1 Road with Moderate Curves 

The Codriver-controlled car is placed in the right lane at the beginning of a curvy 3-km-long two-lane road. The 
lane width is 3.0 meters and the curve radii are kept within reasonable limits like they can be found in real-
world environments. There is no speed limit; however the Codriver will have to adjust the speed to the 
upcoming curvature [2], [3]. 

Figure 22 provides a sketch of the track (left image) and a selection of screenshots of some curves used in the 
test. 

 

       
Figure 22: Lane following on a road with moderate curves 

 

Table 21 gioves the location of the corresponding road description file, the simulation file, and the log data 
which is produced when running the scenario. 
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Data Location 

Generation ./input/laneFollowingTest1.xml 

Simulation ./tools/OpenDS_4.9/assets/DrivingTasks/Projects/LaneFollowingTest1/ 
laneFollowingTest1.xml 

 Results ./tools/OpenDS_4.9/log/LaneFollowingTest1/ 

Table 21: Lane following example 1 – Location of description files and resulting data 

 

3.2.6.2 Road with narrower Curves 

The Codriver-controlled car is placed on the right lane at the beginning of a road with narrower curves. The 
track is 5 km long and consists of two lanes with width of 2.60 meters. There is no speed limit, however, the 
Codriver will have to adjust the speed to the upcoming curvature in order to stay in the lane. 

Figure 23 provides a sketch of the track (left image) and a selection of screenshots of some curves used in the 
test (from the driver’s perspective and from a bird’s view). 

 

       
Figure 23: Lane following on a road with intense curves 

 

Table 22 provides the location of the corresponding road description file, the simulation file, and the log data 
which is produced when running the scenario. 

 

Data Location 

Generation ./input/laneFollowingTest2.xml 

Simulation ./tools/OpenDS_4.9/assets/DrivingTasks/Projects/LaneFollowingTest2/ 
laneFollowingTest2.xml 

 Results ./tools/OpenDS_4.9/log/LaneFollowingTest2/ 

Table 22: Lane following example 2 – Location of description files and resulting data 

 

3.2.7 Overtaking a Slow Vehicle 

In this test, the Codriver-controlled car drives on a two-lane road. The goal is to demonstrate the lane change 
and overtake abilities at different speeds and different oncoming traffic situations. The test is carried out using 
the straight and the curvy road scenarios from 3.2.3. 
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3.2.7.1 Straight Road 

The Codriver is set up to obey the speed limits while coping with four situations of slow vehicles ahead. Placing 
those vehicles at different positions allows to examine the Codriver behaviour at different speeds. Figure 24 
provides a sketch of the track (left) and screenshots of possible overtaking situations: overtaking a slow 
vehicle, overtaking a slow vehicle while coping with oncoming traffic, and overtaking more than one slow 
vehicle at once. It should be reminded that these behaviours (as well as all the other examples) are not 
programmed but they are emergent behaviours produced by the agent sensorimotor architecture (D2.2, D2.3, 
D7.2 and D7.3): 

 

       
Figure 24: Overtaking on a straight road 

 

The first encounter with a slow vehicle can be found in a speed limit zone of 70 km/h. Since the leading vehicle 
is driving at 20 km/h and there is no traffic in the opposite direction, the Codriver changes the lane to overtake 
(cf. Figure 24, image 2). After passing the vehicle, the Codriver goes back into the right lane and continues 
driving at 70 km/h. 

The second encounter is located in the same speed limit zone (70 km/h) with a vehicle ahead driving at 25 
km/h. Since the left lane is blocked by two oncoming vehicles (cf. Figure 24, image 3), the Codriver needs to 
decelerate in order to not collide with the vehicle ahead. Once the left lane is clear, the Codriver accelerates 
again and changes into the left lane to initiate the overtaking manoeuvre as shown in Figure 25.   

 

     
Figure 25: Overtaking on a straight road with oncoming traffic 

 

The third situation occurs at a speed of 50 km/h. The Codriver is supposed to overtake two vehicles at the 
same time (cf. Figure 24, image 4), as the headway between both vehicles is not sufficient to go back into the 
lane after overtaking the first vehicle. The vehicles to overtake travel at a speed of 30 km/h. The detailed 
overtaking manoeuvre is shown in Figure 26. 
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Figure 26: Overtaking more than one vehicle  at once on a straight road 

 

The fourth situation takes place in a speed limit zone of 30 km/h and the vehicle to overtake drives at 20 km/h. 
As there is no oncoming traffic, the Codriver changes lane in order to initiate the overtaking manoeuvre even 
with a minimum speed difference (cf. Figure 24, image 2). 

Table 23 provides the location of the corresponding road description file, the simulation file, and the log data 
which is produced when running the scenario. 

 

Data Location 

Generation ./input/overtakingTest1.xml 

Simulation ./tools/OpenDS_4.9/assets/DrivingTasks/Projects/OvertakingTest1/overtakingTest1.xml 

 Results ./tools/OpenDS_4.9/log/OvertakingTest1/ 

Table 23: Overtaking example 1 – Location of description files and resulting data  

 

3.2.7.2 Curvy Road 

The Codriver has to cope with the same overtaking situations as in the previous version (cf. 3.2.7.1) but on a 
curvy road. Modified speed limits are passed in the following order: 70, 50, 80, 30, STOP. Screenshots are 
shown in Figure 27. 

 

       
Figure 27: Overtaking on a curvy road 

 

The first and second encounter with slow vehicles take place in a speed limit zone of 70 km/h under the same 
conditions, and results as described in 3.2.7.1. Notably, the Codriver selects rather straight segments to 
overtake vehicles (a higher-level biasing loop prevents lane change in curves, see D2.2, D2.3m, D/.2 and D7.3) . 
The third situation (overtaking two vehicles at the same time) occurs – this time – at a speed of 80 km/h and 



D5.5 – System abilities (open data)  Grant Agreement N. 731593 

Dreams4Cars  Page 45 of 51 

the final situation again at 30 km/h. The conditions of situation 3 and 4 are equal to the ones described in 
3.2.7.1. While the result of situation 3 is the same as in 3.2.7.1, the Codriver does not overtake the vehicle of 
situation 4 because approaching the curve (this is a notable example of biasing behaviours). 

Table 24 provides the location of the corresponding road description file, the simulation file, and the log data 
which is produced when running the scenario. 

 

Data Location 

Generation ./input/overtakingTest2.xml 

Simulation ./tools/OpenDS_4.9/assets/DrivingTasks/Projects/OvertakingTest2/overtakingTest2.xml 

 Results ./tools/OpenDS_4.9/log/OvertakingTest2/ 

Table 24: Overtaking example 2 – Location of description files and resulting data  

 

3.2.8 Lane Change with Stationary Vehicles 

The goal of this test is to force a lane change in a safe and reproducible scenario. This can be achieved by e.g. 
putting two (or more) stationary vehicles in two lanes so that the Codriver is forced to perform a second lane 
change after the first stationary vehicle has been passed. 

In this test, the Codriver-controlled car is placed on the right lane at the beginning of a straight 4-km-long 
road. Every 500 to 1000 meters the Codriver faces stationary vehicles, forcing lane change. In order to span 
different situations, the speed of the Codriver-controlled vehicle and the lane configuration differ in each 
situation. The Codriver is set up to obey the speed limits and to drive in the rightmost lane whenever possible. 
Speed limits are in the following order: 40, 70, 50, 80, 30, STOP. 

 

         
Figure 28: Lane change with stationary vehicles 

Figure 28 gives a sketch of the track’s speed limits and screenshots of four different situations including 
expeted paths to pass the stationary vehicles: 1) using the opposite direction lane, 2) using same direction 
lane, 3) performing a double lane change, and 4) performing several consecutive lane changes. 

The first encounter with two stationary vehicles (Figure 29) occurs at the speed of 40 km/h. The first obstacle 
is located in the right lane forcing the Codriver to change to the left lane, which is heading in the opposite 
direction. At a headway of 30 meters, the second stationary obstacle appears in the left lane making the 
Codriver to change back into the right lane. 
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Figure 29: Bypassing two stationary vehicles using the opposite direction lane 

 

For the second situation, the limit becomes 70 km/h and an additional lane appears to the right (same 
direction), resulting in a total of two lanes in driving direction and one in opposite direction. The Codriver-
controlled car changes to the rightmost lane and approaches to the second situation (Figure 30). 

In the second situation, the first obstacle is located in the right lane forcing the Codriver to change to the left 
lane, which is heading in the same direction. At a headway of 60 meters (higher distance due to higher speed), 
the second obstacle appears in the left lane. The Codriver must change back into the right lane in order not to 
collide or infringe the highway code by crossing a solid line. 

 

         
Figure 30: Bypassing two stationary vehicles using the left lane (same direction) 

 

         
Figure 31: Bypassing three stationary vehicles by two consecutive lane changes (same direction) 

     

In the third situation (Figure 31), the Codriver enters a speed limit zone of 50 km/h and another lane appears 
to the right (same direction), resulting in a total of three lanes in the driving direction and one in the opposite 
direction. The Codriver-controlled car changes to the rightmost lane and approaches to the third stationary 
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vehicles situation. Then the Codriver finds the right and centre lanes blocked, forcing it to perform two 
consecutive lane changes to the left (Figure 31). 

 

         
Figure 32: Bypassing six stationary vehicles by several consecutive lane changes (same direction) 

 

The final situation occurs in a speed limit zone of 80 km/h and a lane configuration of one opposite and three 
same direction lanes. The sequence of obstacles is rightàleftàright, where the last obstacle blocks the right 
and centre lane (cf. Figure 32, image 1). While approaching, the Codriver changes to the centre lane in order to 
bypass the first obstacle in the right lane. After 50 meters, the next obstacle appears in the centre and left 
lane, forcing the Codriver-controlled vehicle to change back into to right lane (cf. Figure 32, image 2). Another 
50 meters further ahead the road, and the final obstacle appears in the right and centre lane (cf. Figure 32, 
image 3 and 4) forcing the Codriver to perform two consecutive lane changes to the leftmost lane. After 
passing all obstacles, the Codriver returns back to the rightmost lane (cf. Figure 32, image 5). 

 

Table 25 provides the location of the corresponding road description file, the simulation file, and the log data 
which is produced when running the scenario. 

 

Data Location 

Generation ./input/obstacleTest.xml 

Simulation ./tools/OpenDS_4.9/assets/DrivingTasks/Projects/ObstacleTest/obstacleTest.xml 

 Results ./tools/OpenDS_4.9/log/ObstacleTest/ 

Table 25: Obstacle example – Location of description files and resulting data  
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3.3 Open Software and Documentation 
The latest version of the simulation environment (version 1.5, as of 1st October 2019) including the following 
main features is available in ZENODO8 free for research, studies and benchmarks. It includes: 

• the automatized terrain and road generation toolchain, 
• the OpenDS driving simulation (version 4.9), based on the jMonkey Engine (version 3.1.0), 
• the Codriver agent (version 9.6.1204), and 
• the integration of the Chrono physics engine (version 4.0.0) into OpenDS. 

The above components will be maintained and updated with new versions of the modules, when they will be 
ready and tested. Also, bug reports and new features may be requested. 

Figure 33 shows the components of the simulation environment and the flow of data. 

 

 
Figure 33: Building blocks of the simulation environment (final version) 

 

In addition to the software components mentioned above, ready-to-use driving scenarios with videos (cf. 
Section 3.2) have been uploaded to ZENODO demonstrating the capabilities of the final Codriver 
implementation. For each driving scenario, the following data are available (cf. Figure 33, text files): 

• one scenario description file,  
• several simulation files (including a terrain model and an OpenDRIVE road description), 
• two log files (representing the bidirectional communication between Codriver and OpenDS). 
• ready to view videos (for some scenario) 

                                                             
8 https://zenodo.org/communities/dreams4cars/  (DOI: 10.5281/zenodo.3582054). 
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Processing the scenario description of one of the examples by the terrain and road generation toolchain will 
re-generate the respective simulation files (including terrain and OpenDRIVE file), which have been included in 
the upload for the reader’s convenience. Processing the simulation files of one of the examples by OpenDS will 
re-generate the respective logfiles, which, again, have been included in the upload for the reader’s 
convenience. 

Ready to view videos are also available for quick evaluation. 

Table 26 gives an overview of all provided software components including the license and operating system 
compatibility (W = Windows, L = Linux, M = MacOS). Furthermore, the availability of the source code and the 
programming language/framework used to implement the software component is shown in the table. 

 

Software Component Implemen-
tation License Source 

Code 
Binaries 

W L M 

OpenDS 

Simulation Core Java GNU GPL 
    

OpenDRIVE Integration Java GNU GPL 
    

Chrono Integration Java GNU GPL 
    

Codriver Integration Java GNU GPL 
    

jMonkey Engine Renderer, Bullet Physics Java BSD-3 
    

Chrono Engine OpenDS adaptation C++ BSD-3 
    

Automatized 
Terrain and 
Road Genera-
tion Toolchain 

Scene Generator Unity (C#) GNU GPL 
    

PointList2Geometry Converter C++ GNU GPL 
    

Geometry Generator Java GNU GPL 
    

Road Generator Java GNU GPL 
    

Codriver Server / Library C++ 9 
 

   

Table 26: Overview of provided software components including license, source code availability and OS compatibility  

 

As far as no restrictions of the underlying libraries apply, most software components have been published 
under the GNU GPL v3 (GNU General Public License Version 3) open-source license, which allows the user to 
copy, distribute and modify the software as long as changes/dates are tracked in source files. Any 
modifications to it or software including GPL-licensed code must also be made available under the GPL along 
with build & install instructions.  

                                                             
9 The license for the Codriver library is given as a separate license file in the repository.  
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Except for the Codriver and some external resources (e.g. EasyRoads 3D Pro) used by the terrain and road 
generation toolchain, the respective source code is enclosed in the software submission. In order to build the 
terrain and road generation toolchain from sources, one needs to purchase a license for Unity and EasyRoads 
3D Pro, first. The additional source code is open and contained in the upload. Documentation and further 
information about how to build the source code and run the software can be found next to the respective 
component.   
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