

This project has received funding from the European Union's Horizon 2020 research and innovation
programme under grant agreement No 731593

Dream-like simulation abilities
for automated cars

Grant Agreement No. 731593

Deliverable: D5.5 – System abilities (open data)

Dissemination level: PU – Public

Delivery date: 31/December/2019

Status: Final

D5.5 – System abilities (open data) Grant Agreement N. 731593

Dreams4Cars Page 2 of 51

Deliverable Title System abilities (open data)

WP number and title WP5 Agent evolution, evaluation of ability levels and final
assessment of the technology

Lead Editor Mauro Da Lio, UNITN

Contributors

Rafael Math, DFKI

Gastone Pietro Rosati Papini, Alice Plebe, UNITN

Creation Date 29/October/2019 Version number 0.9

Deliverable Due Date 31/December/2019 Actual Delivery Date 23/December/2019

Nature of deliverable

X R - Report

 DEM – Demonstrator, pilot, prototype, plan designs

 DEC – Websites, patents filing, press&media actions

X O – Other – Software, technical diagram

Dissemination Level /
Audience

X PU – Public, fully open

 CO - Confidential, restricted under conditions set out in
MGA

 CI – Classified, information as referred to in Commission
Decision 2001/844/EC

Version Date Modified by Comments

0.1 29/October/2019 Rafael Math First draft for discussion

0.2 16/November/2019 Mauro Da Lio
Arrangement of the experimental data
section. Section 2.1. Section 1 (introduction
and objectives).

0.3 22/November/2019 Rafael Math Added simulation examples

0.4 01/December/2019 Mauro Da Lio Section 2.2

0.5 13/December/2019 Rafael Math Minor changes

0.6 15/December/2019 Alice Plebe Minor changes on language and some
comments on unclear parts

0.7 17/December/2019 Gastone Pietro
Rosati Papini Minor comments on the unclear parts.

0.8 19/December/2019 Rafael Math Changes requested by peer reviewers

0.9 23/December/2019 Mauro Da Lio Final version for submission

D5.5 – System abilities (open data) Grant Agreement N. 731593

Dreams4Cars Page 3 of 51

EXECUTIVE SUMMARY

This deliverable is the public version of D5.4 and documents data that is made publicly available at the end of
the project. This includes two types of data:

1) Experimental data (and examples of data use) from test vehicles.
2) Simulation tools, simulation examples and simulation data.

The provided material includes the licensed Codriver agent for hands-on testing in the virtual prototyping envi-
ronment OpenDS.

D5.5 – System abilities (open data) Grant Agreement N. 731593

Dreams4Cars Page 4 of 51

Table of Contents

1	 Introduction and Objectives ... 7	
1.1	 Introduction	..	7	
1.2	 Experimental data from test vehicles	..	7	
1.3	 Simulation tools, examples and data	...	7	

2	 Experimental data from test vehicles ... 9	
2.1	 Longitudinal dynamics of the MIA car	...	9	
2.2	 Lateral dynamics of the MIA car	...	10	

3	 Simulation Tools, Examples, and Data .. 12	
3.1	 Generation of Driving Scenarios	...	12	

3.1.1	 Road Description Specification ... 14	
3.1.1.1	 Terrain Description .. 14	
3.1.1.2	 Road Segment Description ... 15	
3.1.1.3	 Intersection Description .. 17	
3.1.1.4	 Traffic Description ... 18	

3.1.1.4.1	 Codriver-controlled Vehicle	..	18	
3.1.1.4.2	 Vehicles	..	19	
3.1.1.4.3	 Pedestrians	...	20	

3.1.1.5	 Hints and Restrictions .. 22	
3.1.2	 Terrain Generation ... 23	
3.1.3	 Point List to Road Reference Line.. 25	
3.1.4	 Road Reference Lines to OpenDRIVE Road Description ... 27	

3.1.4.1	 Geometry Generator ... 27	
3.1.4.2	 Road Generator ... 29	

3.1.5	 OpenDS .. 30	
3.2	 Examples of Driving Scenarios	...	33	

3.2.1	 Generated Terrain and Road Network Scenario .. 33	
3.2.2	 Chrono Scenario ... 34	
3.2.3	 Speed Adaptation ... 35	

3.2.3.1	 Straight Road ... 35	
3.2.3.2	 Curvy Road .. 36	

3.2.4	 Car Following .. 37	
3.2.4.1	 Straight Road ... 37	
3.2.4.2	 Curvy Road .. 37	

3.2.5	 Pedestrian Approaching ... 38	
3.2.5.1	 Single-lane Road .. 38	
3.2.5.2	 Two-lane Road .. 39	

D5.5 – System abilities (open data) Grant Agreement N. 731593

Dreams4Cars Page 5 of 51

3.2.5.3	 Two-lane Road with Oncoming Traffic ... 40	
3.2.6	 Lane Following ... 41	

3.2.6.1	 Road with Moderate Curves .. 41	
3.2.6.2	 Road with narrower Curves ... 42	

3.2.7	 Overtaking a Slow Vehicle .. 42	
3.2.7.1	 Straight Road ... 43	
3.2.7.2	 Curvy Road .. 44	

3.2.8	 Lane Change with Stationary Vehicles ... 45	
3.3	 Open Software and Documentation	...	48	

4	 Bibliographical References.. 51	

D5.5 – System abilities (open data) Grant Agreement N. 731593

Dreams4Cars Page 6 of 51

List of Figures

Figure 1: Dataset folder for the longitudinal dynamics of the MIA car. ... 9	
Figure 2: Dataset folder for the Lateral dynamics of the MIA car.. 11	
Figure 3: Building blocks of the Terrain and Road Generation Toolchain .. 12	
Figure 4: Visual representation of a tree-like road description ... 16	
Figure 5: Lane positions of an OpenDRIVE road – with and without lane offset .. 18	
Figure 6: Sketch of the example described in Listing 7 ... 22	
Figure 7: EasyRoads3D Pro – simple road models .. 23	
Figure 8: EasyRoads3D Pro – terrain deformation .. 24	
Figure 9: Cornucopia – Fitting primitives to a list of points (colour code: line, arc, spiral) 25	
Figure 10: OpenDRIVE representation of a sample road segment (road reference line) 29	
Figure 11: OpenDRIVE representation of a custom-built intersection area ... 29	
Figure 12: OpenDRIVE representation of a sample road segment (textured) with dynamic scene objects 32	
Figure 13: OpenDS simulation of an automatically generated road network (the inset on the top left fram is a
representation of the codriver motor space (or motor cortex). .. 32	
Figure 14: Generated scenario including terrain, crossroads, traffic, and pedestrians 33	
Figure 15: Speed adaptation on a straight road ... 35	
Figure 16: Speed adaptation on a curvy road ... 36	
Figure 17: Car following on a straight road .. 37	
Figure 18: Car following on a curvy road .. 38	
Figure 19: Pedestrian approaching on a one-lane road .. 38	
Figure 20: Pedestrian approaching on a two-lane road .. 39	
Figure 21: Pedestrian approaching on a two-lane road with oncoming traffic .. 40	
Figure 22: Lane following on a road with moderate curves .. 41	
Figure 23: Lane following on a road with intense curves .. 42	
Figure 24: Overtaking on a straight road .. 43	
Figure 25: Overtaking on a straight road with oncoming traffic .. 43	
Figure 26: Overtaking more than one vehicle at once on a straight road ... 44	
Figure 27: Overtaking on a curvy road ... 44	
Figure 28: Lane change with stationary vehicles .. 45	
Figure 29: Bypassing two stationary vehicles using the opposite direction lane ... 46	
Figure 30: Bypassing two stationary vehicles using the left lane (same direction) .. 46	
Figure 31: Bypassing three stationary vehicles by two consecutive lane changes (same direction) 46	
Figure 32: Bypassing six stationary vehicles by several consecutive lane changes (same direction) 47	
Figure 33: Building blocks of the simulation environment (final version) .. 48	

D5.5 – System abilities (open data) Grant Agreement N. 731593

Dreams4Cars Page 7 of 51

1 Introduction and Objectives

1.1 Introduction
According to the Data Management Plans (D7.5, D7.6 and D7.7) Dreams4Cars is committed to produce Open
Research Data.

This deliverable documents data that is made accessible at the end of the project. This includes essentially two
types of data:

3) Experimental data (and examples of data use) from test vehicles.
4) Simulation tools, simulation examples and simulation data.

Not all data collected by Dreams4Cars is disclosed now (by the end of the project) for several reasons that
range from confidentiality of the OEM vehicle data to avoiding anticipated disclosure of materials that is going
to be used for exploitation and/or upcoming publications.

Hence, balancing the needs between producing Open Research Data and IPR protection, the following data are
published on ZENODO https://zenodo.org/, at the domain for Dreams4Cars Horizon 2020 Project community
https://zenodo.org/communities/dreams4cars/ (DOI: 10.5281/zenodo.3582054, 10.5281/zenodo.3582953).
After the conclusion of the Dreams4Cars this repository will be maintained updated with any future follow-up
related publications and to promote further developments of the D4C concepts.

1.2 Experimental data from test vehicles
Section 2 of this deliverable documents the experimental data collected by the MIA car test vehicle (DOI:
10.5281/zenodo.3582953). We give datasets that are used for training the lateral and longitudinal vehicle
forward models and example neural networks and training procedures that produce the forward models.

This corresponds to providing examples for the public version of the final simulation system (D3.3, section 3.1).

1.3 Simulation tools, examples and data
Section 3 of this deliverable documents the OpenDS environment with the final version of the Codriver (DOI:
10.5281/zenodo.3582054). Use of this software is regulated by a license agreement1. With this tool we also
give example scenarios.
Compared to other free simulators this suite provides:

a) The Codriver agent.
b) A toolchain for automatic generation of driving scenarios.
c) Simulation based on (third-party) OpenDRIVE road description files.
d) Simulation at fixed step size (faster-than-real-time and deterministic simulation).
e) Support of two physics engines: Chrono and Bullet engine.

The latter (e) allows the user to choose from a basic and an advanced vehicle dynamics simulation. The basic
vehicle dynamics model (based on the Bullet engine) is highly efficient and more realistic than in other free
simulators and may be sufficient for testing behaviours that do not require hard manoeuvres (preventive safe-
ty). A more complete vehicle dynamics model (based on the Chrono engine) can be configured for driving in
emergency situations with hard manoeuvres (but note that to efficiently drive one vehicle, the matched in-
verse models must be trained and used: the current inverse dynamics matches the provide examples).
Collectively, the data and tools provided in section 3 correspond to the public version of the agent described in
D2.3.

1 OpenDS is open source. The Codriver library may be used under the conditions listed in the repository.

D5.5 – System abilities (open data) Grant Agreement N. 731593

Dreams4Cars Page 8 of 51

With the open simulation environment, many research and evaluation activities become possible to external
researchers and industrial users, such as, e.g.:

1) The Codriver agent integrated into OpenDS environment can be installed into driving simulators for
various realistic studies on human-automated vehicle interactions. The fact that a very realistic and
human like codriver agent is used constitutes a significant advancement in these kinds of studies.

2) The Codriver agent in collaboration with the OpenDS environment can be used for Reinforcement
Learning framework studies (i.e., learning high-level behavioural parameters) following the lines of
D3.3.

3) Developers of automated driving functions can use the agent as a benchmark.
4) Researchers can use the environment to test different types of driving assistance functions.

This list is of course non-exhaustive, because many other uses can be done with the released environment.

D5.5 – System abilities (open data) Grant Agreement N. 731593

Dreams4Cars Page 9 of 51

2 Experimental data from test vehicles

2.1 Longitudinal dynamics of the MIA car
Here we demonstrate the learning of forward models, following the methods explained in D3.3. The following
table lists the data that were collected in 4 different test sessions that correspond to the test pans listed in
section 2.1.1 of deliverable D5.1 (Vehicle Dynamics Tests for Learning Forward/Inverse models).

The datasets are stored in ZENODO (DOI: 10.5281/zenodo.3582953) and summarized in Figure 1. Data are
stored both in the form of HDF5 files and in the form of Wolfram’s .mx files. The datasets contain the relevant
signals for the forward models, which have been extracted from the original ROS rosbags recorded during
tests. More details concerning the datasets are given in the information sheets (the .docx files) included in the
dataset folders.

Figure 1: Dataset folder for the longitudinal dynamics of the MIA car.

A Wolfram Mathematica notebook (“MIA Longitudinal Dynamics Neural Network model v2.nb”) is provided
that opens both file types and guides step by step to the construction, training and evaluation of the vehicle
forward model. It can be opened with the free Wolfram CDF player (https://www.wolfram.com/player/) and
used as a guide to reproduce the same workflow in any other deep learning framework. For a live
demonstration the notebook can be executed with Wolfram Mathematica (a free 15 days trial license is
available https://www.wolfram.com/mathematica/trial/). The Mathematica version used for the example is
12.0.

Concerning the 4 datasets, it has to be noted that the data collected in the first two sessions (March and May
2018) have been pre-processed to eliminate various measurement issues (including filtering with a
Butterworth filter of order 3 and cut frequency of 1Hz). Hence the first two dataset have a different level of
noise than the latter two, and might not represent the exact dynamics of the test vehicle.

The forward/inverse models used in the project have been trained on the third dataset. The fourth dataset is
on gravel surface and served to make comparisons with the asphalt surface of the third dataset.

D5.5 – System abilities (open data) Grant Agreement N. 731593

Dreams4Cars Page 10 of 51

Table 1: Test sessions for collection of data for the learning of forward models

Dataset Date and place Contents (HDF5 and MX file formats)

20180321-Jeddeloh-Test 2018/3/21
Jeddeloh
(gravel surface)

36 start and stop manoeuvres (throttle
steps followed by brake steps).

Longitudinal velocity (filtered)
Longitudinal acceleration (filtered)
Throttle command
Brake command

N.B. data have been pre-processed to
filter several issues.

20180525-Bassum-Test 2018/5/25
Bassum race track
(asphalt surface)

24 start and stop manoeuvres (throttle
steps followed by brake steps).

Longitudinal velocity (filtered)
Longitudinal acceleration (filtered)
Throttle command
Brake command

N.B. data have been pre-processed to
filter several issues.

20180929-ATC-Dynamic-Day1 2018/9/29
Aldenhoven Testing Center
 (asphalt surface)

14 brake steps,
14 throttle steps,
7 random throttle input

Longitudinal velocity (raw from odometer)
Longitudinal acceleration (from IMU)
Throttle command
Brake command

20190815-Jeddeloh-Dynamic 2019/8/15
Jeddeloh
(gravel surface)

36 start and stop manoeuvres

Longitudinal velocity (raw from odometer)
Longitudinal acceleration (from IMU)
Throttle command
Brake command

2.2 Lateral dynamics of the MIA car
This section is like the previous one but for the lateral dynamics of the MIA car (with same DOI:
10.5281/zenodo.3582953). The following table lists the data of 3 different test sessions. The first one is made
of steering sine and steering step inputs used for training. The second one refers to a driving situation on the

D5.5 – System abilities (open data) Grant Agreement N. 731593

Dreams4Cars Page 11 of 51

same test track (ATC). The third one is on a different test track which has much narrower curves, as sharp as ~4
m radius (the MIA is a minute car which can afford such small radiuses).

The datasets are stored in ZENODO with same criteria of the previous section (Figure 2).

A Wolfram Mathematica notebook (“MIA Lateral Dynamics Neural Network model v2.nb”) is provided that
opens both file types and guides step by step to the construction, training and evaluation of the vehicle lateral
forward model.

Figure 2: Dataset folder for the Lateral dynamics of the MIA car.

Table 2: Test sessions for collection of data for the learning of lateral forward models

Dataset Date and place Contents (HDF5 and MX file formats)

20180929-ATC-Dynamic-Day1 2018/9/29
Aldenhoven Testing Center
 (asphalt surface)

12 sinusoidal sweep steering inputs with
variable amplitude and frequency (from
0.2 to 1.5 Hz).
 6 steering step inputs with variable
amplitude.

Longitudinal velocity (raw from odometer)
Steering wheel angle
Yaw rate (from IMU)

20180930-ATC-Dynamic-Day2 2018/9/30
Aldenhoven Testing Center
 (asphalt surface)

2 general course recordings

Longitudinal velocity (raw from odometer)
Steering wheel angle
Yaw rate (from IMU)

D5.5 – System abilities (open data) Grant Agreement N. 731593

Dreams4Cars Page 12 of 51

20190522-Bassum-LaneFollowing 2019/5/22
Bassum race track
(asphalt surface)

15 general course recordings (with narrow
curves)

Longitudinal velocity (raw from odometer)
Steering wheel angle
Yaw rate (from IMU)

3 Simulation Tools, Examples, and Data
This chapter deals with open data generated by the simulation environment (DOI: 10.5281/zenodo.3582054).

Section 3.1 explains how to use the automatized terrain and road generation toolchain in order to create
complex driving situations for simulation with OpenDS.

Section 3.2 presents selected examples which have been described in D5.1 – Test Plans, Methods, and Metrics
as simulation fidelity tests. These examples have been created with the help of the toolchain described in
Section 3.1.

An overview of the simulation software implemented in Dreams4Cars, which has been made publicly available,
is given in Section 3.3.

3.1 Generation of Driving Scenarios
In the following, we present a toolchain to create road networks aligned to realistic terrain models for the
simulation with OpenDS, the central component of the Dreams4Cars simulation environment. The toolchain
consists of several individual applications transforming a simple road description file (RDf) into a 3D terrain
and road network model with semantic information about the road and lane geometry. Each application in the
toolchain can be accessed from the command line, reading the output of its predecessor and providing input
to its successor. Figure 3 depicts the complete toolchain including flow of data.

Figure 3: Building blocks of the Terrain and Road Generation Toolchain

D5.5 – System abilities (open data) Grant Agreement N. 731593

Dreams4Cars Page 13 of 51

The complete road generation process, as shown in Figure 3, starts when a RDf is passed to the terrain
generation component (Scene Generator), which extracts terrain and road network information from this file.
Accordingly, a 16-bit heightmap (in RAW format) from the central heightmap repository is loaded to generate
a 3D terrain model. On top of this model, roads are placed, deforming the initial terrain if necessary. The
(deformed) terrain is saved in a simulator-readable format (Wavefront OBJ) and for each road segment a list of
2D coordinates is generated representing the road reference line, which usually is equal to the centreline. Each
coordinate list is filled with the absolute position data of the original reference line (approx. one coordinate
per meter) and is forwarded to the geometry generation tools (cf. Figure 3). In the first geometry generation
tool (PointList2Geometry Converter), all the point lists are processed sequentially by the Cornucopia algorithm
to generate one set of curve primitives out of every point list. In the next tool (Geometry Generator), each set
of curve primitives is converted into an OpenDRIVE geometry and, finally, the Road Generator puts together
the OpenDRIVE geometries according to the initial road description by generating junctions to connect road
sections whenever necessary. The result of the Road Generator is a road network description in OpenDRIVE
format2, which matches the previously generated terrain. Both terrain and OpenDRIVE files are forwarded to
the driving simulator (OpenDS) – together with simulation files – and the road generation process terminates.
The simulation files are generated from templates and contain typical parameters and settings used to launch
OpenDS with the generated terrain and OpenDRIVE files. Table 3 shows the location of the individual tools in
the directory structure of the simulation environment.

Tool/Resource Directory

road description files (RDf) ./input/

automated toolchain scripts ./input/{Linux_executables/, Windows_executables/}

heightmaps ./heightmaps/

Scene Generator ./tools/SceneGenerator/SceneGenerator{.exe, .x86, .x86_64}

PointList2Geometry Converter ./tools/PointList2Geometry/P2GConverter{.exe, }

Geometry Generator ./tools/OpenDS_4.9/GeometryGenerator.jar

Road Generator ./tools/OpenDS_4.9/RoadGenerator.jar

OpenDS ./tools/OpenDS_4.9/OpenDS.jar

output folder ./output/

Table 3: Overview of tools/resources and their location in the directory structure

Linux and Windows scripts are available to execute the complete toolchain in order to automatically transform
one of the sample RDfs (located in ./input/) into a 3D model and an OpenDRIVE file by just one mouse click.
The Linux and Windows scripts can be found in the folders ./input/Linux_executables/ and
./input/Windows_executables/, respectively, named after the sample RDfs. Executing a script results in the

2 At the time of implementation OpenDRIVE Specification Format version 1.4H was the latest version. For further details
visit: http://www.opendrive.org

D5.5 – System abilities (open data) Grant Agreement N. 731593

Dreams4Cars Page 14 of 51

generation of a 3D terrain model, an OpenDRIVE road description file, and five generic simulation files needed
to run the scenario by OpenDS. The resulting files are stored in the OpenDS folder (where they are used for
simulation) at the following locations:

 3D terrain model: ./tools/OpenDS_4.9/assets/Scenes/<current timestamp>/

 OpenDRIVE file: ./tools/OpenDS_4.9/assets/DrivingTasks/Projects/<current timestamp>/

 Simulation files: ./tools/OpenDS_4.9/assets/DrivingTasks/Projects/<current timestamp>/

Furthermore, these files as well as all intermediate results (point lists, curve primitives, etc.) of the toolchain
are copied to ./output/<current timestamp>/.

Apart from executing the tools of the toolchain by one of the scripts, each tool can be executed individually as
described below.

The following sections provides additional details about the road description specification (Section 3.1.1),
which is used to create RDfs , and the links of the road generation toolchain (Sections 3.1.2, 3.1.3, and 3.1.4),
which processes a road description file. Section 3.1.5 is about the driving simulation software OpenDS, which is
capable of loading the resulting terrain and road network.

3.1.1 Road Description Specification

This section introduces the specification used to define (almost) arbitrary road networks represented by
human-readable XML files. The specification allows the definition of the underlying terrain structure as well as
the exact pathway of the road geometry including lane layout, intersections, speed limits, and planned
vehicular trajectories (the Codriver agent generates its own trajectory). Furthermore, trajectories of
pedestrians can be defined relative to the road geometry. A full description of the specification can be
obtained from the XML schema file, which can be found at ./input/roadDescription.xsd.

The XML structure of a road description file is divided into four main parts: terrain description, road segment
description, intersection description, and traffic description (cf. Listing 1), which are described below in more
details.

<roadDescription>
 <terrain>...</terrain>
 <segments>...</segments>
 <intersections>...</intersections>
 <traffic>
 <codriver>...</codriver>
 <vehicles>...</vehicles>
 <pedestrians>...</pedestrians>
 </traffic>
</roadDescription>

Listing 1: Road Description File (RDf) – overview

3.1.1.1 Terrain Description

In this part, terrain properties like extent, heightmap, and starting point of the road network must be
specified. The heightmap can be created in advance with a tool of choice; however, we recommend using

D5.5 – System abilities (open data) Grant Agreement N. 731593

Dreams4Cars Page 15 of 51

L3DT3, a Windows application for generating terrain maps and textures. Heightmaps must be saved in 16-bit
RAW format. Table 4 lists all available properties and Listing 2 gives an example of a terrain description.

Property Type Unit Description

extent/@length4 Float meter Length of terrain

extent/@width Float meter Width of terrain

extent/@maxHeight Float meter Difference between lowest and highest points

heightmap/@path String Path to heightmap file (RAW format)

heightmap/@resolution Int Resolution of heightmap (square)

roadStartingPoint/@x Float meter x offset of starting point for road generation

roadStartingPoint/@z Float meter z offset of starting point for road generation

Table 4: Road Description File – terrain properties

<terrain>
 <extent length="500" width="500" maxHeight="15" />
 <heightMap path="heightmaps/heightmap_2048_001.raw" resolution="2048"/>
 <roadStartingPoint x="100" z="400" />
</terrain>

Listing 2: Road Description File – sample terrain description

The initial road segment will be placed in the road starting point and the road generation will begin in x-
direction.

3.1.1.2 Road Segment Description

The second part of the road description specification contains a list of all road segments. Since road networks
are represented in terms of trees, each road segment (node) needs to have a unique ID in order to define
predecessor/successor relations (edges) to connect the root with the leaves. Figure 4 depicts a sample road
tree consisting of five road segments (one root node, one inner node, and three leaf nodes) and one
intersection.

3 Large 3D Terrain Generator, Bundysoft: http://www.bundysoft.com/L3DT/
4 XML elements are separated by “/“ (slash) and attributes are marked with “@”

D5.5 – System abilities (open data) Grant Agreement N. 731593

Dreams4Cars Page 16 of 51

Figure 4: Visual representation of a tree-like road description

Except for the root (Figure 4, seg001), which is separately marked as “initial”, every segment has one
predecessor and except for the leaves (Figure 4, seg012-seg014), every segment has one successor. The
successor of a segment can be either another segment or an intersection (junction); intersections may have
multiple successor segments, however, no succeeding intersection. In the example, seg001 is succeeded by
seg002, which again is succeeded by intersect001. Be aware that the definition of segments must contain
exactly one “initial” segment.

The layout of each segment is defined by a sequence of geometries (curves and straights) which can have
arbitrary curvature (angle) and length. Furthermore, each segment contains information about the number of
lanes, the lane width, and the speed limit. All available properties of a road segment can be found in Table 5.

Property Type Unit Description

@id String Unique ID of road segment

@initial Boolean true/false Whether road segment is root

geometries/geometry/@length Float meter Length of underlying geometry

geometries/geometry/@curvature Float degree Curvature of geometry (straight = 0)

successor/segment/@ref String Reference of successor segment

successor/intersection/@ref String Reference of successor intersection

laneLayout/noOfLanes Int Number of lanes (1, 2, or 4)

laneLayout/width Float meter Width of lane

laneLayout/speedLimit Float km/h Speed limit in generation direction

laneLayout/speedLimitOppositeDirection Float km/h Speed limit in opposite direction

surface/friction Float Road friction coefficient (optional)

Table 5: Road Description File – road segment properties

D5.5 – System abilities (open data) Grant Agreement N. 731593

Dreams4Cars Page 17 of 51

The curvature attribute describes the angle (in degrees) of the curve of a “geometry” entry. For instance, a
value of “-90” describes a geometry that is curved to the left at a right angle, the value “0” describes a straight
geometry, and “20” describes a geometry curved to the right at 20 degrees.

The length attribute defines the length (in meters) the given curve has. Changing the length of a curve can
also be used to increase/decrease the curve radius.

A sample road segment description (implementing seg001 of Figure 4) can be found in Listing 3.

<segments>
 <segment id="seg001" initial="true">
 <geometries>
 <geometry length="50" curvature="0" />
 <geometry length="50" curvature="120" />
 </geometry>
 <laneLayout>
 <noOfLanes>2</noOfLanes>
 <laneWidth>2.60</laneWidth>
 <speedLimit>80</speedLimit>
 </laneLayout>
 <successor>
 <segment ref="seg002" />
 </successor>
 </segment>
</segments>

Listing 3: Road Description File – sample road segment description

The <successor> element of segment seg002 in the previous example (cf. Figure 4) points to intersection
intersect001 and the corresponding line in the road segment description will read as follows: <segment
ref="intersect001" />.

3.1.1.3 Intersection Description

The intersection part is optional and may contain a list of intersections which must have a unique ID in order to
be referenced as the successor of one of the road segments. Furthermore, each intersection must have two (in
case of T-junctions) or three (in case of crossroads) successor segments (= outgoing segments) which must be
defined in the road segments part (3.1.1.2). Every outgoing segment of an intersection must be assigned to
one of the following directions: -90, 0, and 90. Each direction may not be assigned to more than one segment.
-90/0/90 denotes that the outgoing segment is connected to the left/straight/right (from the perspective of
the incoming road). In case of a crossroad, all four outgoing segments must be provided, in case of a T-
junction, one of the outgoing directions may be omitted.

Table 6 represents the properties of an intersection.

Property Type Unit Description

@id String Unique ID of intersection

@type String (not in use)

outgoingSegment/@ref String ID of outgoing road segment

outgoingSegment/@degree String degree Connection direction (-90 = left, 0 = straight, 90 = right)

Table 6: Road Description File – intersection properties

D5.5 – System abilities (open data) Grant Agreement N. 731593

Dreams4Cars Page 18 of 51

The previous example (cf. Figure 4) contains a four-way intersection (=crossroad) with one incoming road
(seg002) and three outgoing roads. Segment seg012 is connected to the left (-90), seg013 straight ahead (0),
and seg014 to the right (90). Listing 4 shows the corresponding intersection description of intersect001.

<intersections>
 <intersection id="intersect001" type="crossing">
 <outgoingSegment ref="seg012" degree="-90"/>
 <outgoingSegment ref="seg013" degree="0"/>
 <outgoingSegment ref="seg014" degree="90" />
 </intersection>
</intersections>

Listing 4: Road Description File – sample intersection description

3.1.1.4 Traffic Description

This part of the road description specification describes the traffic present in a driving scenario, which includes
computer-controlled vehicles and pedestrians as well as the vehicle controlled by the Codriver. In the following
subsections, more details about these three types of traffic will be introduced.

3.1.1.4.1 Codriver-controlled Vehicle

The Codriver-controlled vehicle is the substantial element of the simulation. In this subsection, we
demonstrate how to set up Codriver parameters like initial position and target position, intended pathways,
and interaction with the simulation environment.

The initial position of the Codriver-controlled vehicle must be specified by providing segment ID, lane position
and offset from the starting point of the segment. The given segment ID must be equal to one of the segment
IDs defined in Section 3.1.1.2. The lane position is given by a non-zero integer value according to Figure 5.
Facing the direction of road creation, lanes left of the lane reference line have positive numbers (red lanes)
and lanes right of the lane reference line have negative numbers (green lanes). If there is no lane offset (which
is usually the case for segments generated by this toolchain), lane reference line and road reference line are
equal. The enumeration of the lanes starts at the lane reference line in positive and negative direction. E.g. the
position of the first lane to the right will be “-1”, while the position of the fourth lane to the left will be “4” (if it
exists). The longitudinal offset must be given in meters from the beginning of the given segment and must not
exceed the length of the segment.

Figure 5: Lane positions of an OpenDRIVE road – with and without lane offset

Optionally, preferred pathways can be specified for driving scenarios containing intersections. For this
purpose, every vehicle provides a specific connection list which allows specifying a from/to relation for a given
intersection. For instance, a vehicle can be set up to turn right at intersect001 from seg002 to seg014 (see
Figure 4).

D5.5 – System abilities (open data) Grant Agreement N. 731593

Dreams4Cars Page 19 of 51

Furthermore, a target position – consisting of segment ID (e.g. seg014), lane position (e.g. -1) and offset (e.g.
20) from the starting point of the segment – and a condition for termination of the simulation may be added.
Termination conditions include the Codriver-controlled vehicle reaching its target position and/or reaching the
end of any leaf vertex of the road tree. All available vehicle properties can be found in Table 7 and a sample
Codriver description implementing the aforementioned values is shown in Listing 5.

Property Type Unit Description

startPosition/@segment String ID of initial road segment of Codriver

startPosition/@lane Int Initial lane position of Codriver

startPosition/@s Float meter Starting position relative to lane start

connection/@intersectionID String ID of intersection

connection/@from String ID of source road segment

connection/@to String ID of target road segment

targetPosition/@segment String ID of initial road segment of Codriver

targetPosition/@lane Int Initial lane position of Codriver

targetPosition/@s Float meter Starting position relative to lane start

terminateSimulation/

@onTargetPositionReached
Boolean true/false Stop if Codriver reached target position

terminateSimulation/

@onRoadEndReached
Boolean true/false Stop if Codriver reached any road end

Table 7: Road Description File – codriver properties

<traffic>
 <codriver>
 <startPosition segment="seg001" lane="-1" s="10" />
 <preferredConnections>
 <connection intersectionID="intersect001" from="seg002" to="seg014" />
 </preferredConnections>
 <targetPosition segment="seg014" lane="-1" s="20" />
 <terminateSimulation onTargetPositionReached="true" onRoadEndReached="false" />
 </codriver>
</traffic>

Listing 5: Road Description File – sample Codriver description

3.1.1.4.2 Vehicles

Computer-controlled vehicles are optional. If present, a unique ID and a starting position (segment ID, lane
position and longitudinal offset (cf. 3.1.1.4.1)) must be specified for each vehicle. Optionally, preferred
pathways can be specified for driving scenarios containing intersections (similar to 3.1.1.4.1). Furthermore, an

D5.5 – System abilities (open data) Grant Agreement N. 731593

Dreams4Cars Page 20 of 51

individual speed limit may be set for each vehicle by the use of the optional <maxSpeed> element. All available
vehicle properties can be found in Table 8 and a sample vehicle description is shown in Listing 6.

Property Type Unit Description

@id String ID of vehicle

startPosition/@segment String ID of initial road segment of vehicle

startPosition/@lane Int Initial lane position of vehicle

startPosition/@s Float meter Starting position relative to lane start

connection/@intersectionID String ID of intersection

connection/@from String ID of source road segment

connection/@to String ID of target road segment

maxSpeed Float km/h Individual speed limit of vehicle

Table 8: Road Description File – vehicle properties

<traffic>
 <vehicles>
 <vehicle id="car01">
 <maxSpeed>50</maxSpeed>
 <startPosition segment="seg014" lane="1" s="30" />
 <preferredConnections>
 <connection intersectionID="intersect001" from="seg014" to="seg012" />
 </preferredConnections>
 </vehicle>
 <vehicles>
</traffic>

Listing 6: Road Description File – sample vehicle description

3.1.1.4.3 Pedestrians

Pedestrians are optional. If present, a unique ID, a start position, and a list of walking targets must be specified
for each pedestrian. Optionally, one can specify whether the beginning of the pedestrian’s walk will depend on
the position of the Codriver-controlled vehicle. Listing 7 shows a sample pedestrian definition.

<traffic>
 <pedestrians>
 <pedestrian id="pedestrian01" >
 <startPosition segment="seg002" lateralOffset="-5.3" s="0" />
 <targets>
 <target lateralOffset="-5.3" s="30" speed="4.1" />
 <target lateralOffset="5.3" s="30" speed="2.8" />
 <target lateralOffset="5.3" s="60" speed="4.3" />
 <target lateralOffset="-5.3" s="60" speed="1.5" />
 </targets>
 <triggerPosition segment="seg001" lane="-1" s="20" />
 </pedestrian>
 </pedestrians>
</traffic>

Listing 7: Road Description File – sample pedestrian description

D5.5 – System abilities (open data) Grant Agreement N. 731593

Dreams4Cars Page 21 of 51

Besides the id attribute, which needs to be provided with a unique ID, the <startPosition> element and the
<targets> element need also to be present. The <triggerPosition> element is optional.

<startPosition> represents the initial position of the pedestrian provided by 2D coordinates (lateral offset
lateralOffset and longitudinal offset s) relative to the given road segment (segment). All three attributes
are required. Since the road segment of the start position serves as a reference system of the pedestrian’s
position, making the pedestrian change between two road segments (i.e., two distinct coordinate systems) will
not be possible. Due to this restriction, the indication of the segment has been omitted in the following
<target> elements; the positional data implicitly refer to the segment given by <startPosition>.

<targets> represents a list of 2D way points the pedestrian will process in the given order by walking to the
given relative positions (lateralOffset and s) successively at the given speed (speed). At least one <target>
sub-element with the required attributes lateralOffset, s, and speed must to be provided.

<triggerPosition> allows to provide a relative position (segment, lateralOffset, and longitudinal offset
s) which needs to be approached by the Codriver vehicle to make the pedestrian start walking towards the
first target. If the optional <triggerPosition> element is present, segment, lane, and s must be provided;
otherwise, the pedestrian will start walking immediately after the starting the simulation. In contrast to the
<target> elements, the position of the trigger is not limited to the road segment given by <startPosition>
and, thus, the segment attributes of <startPosition> and <triggerPosition> may differ.

Table 9 shows types and units of all available attributes and sub-elements of a pedestrian element.

Property Type Unit Description

@id String ID of pedestrian

startPosition/@segment String ID of initial road segment of pedestrian

startPosition/@lateralOffset Float meter Initial lateral offset

startPosition/@s Float meter Initial longitudinal offset

targets/target/@lateralOffset Float meter lateral offset of target

targets/target/@s Float meter longitudinal offset of target

targets/target/@speed Float km/h speed towards target

triggerPosition/@segment String
Codriver trigger position (segment, lane
and longitudinal offset) to start walking triggerPosition/@lane Int

triggerPosition/@s Float meter

Table 9: Road Description File – pedestrian properties

Example. Figure 6 visualizes the example given in Listing 7. The initial position of the pedestrian pedestrian01
is at the beginning (s=0) of road segment seg002. The initial lateral offset is 5.3 meters right of the road
reference line (see green dot).

D5.5 – System abilities (open data) Grant Agreement N. 731593

Dreams4Cars Page 22 of 51

Figure 6: Sketch of the example described in Listing 7

When the codriver vehicle hits the trigger, which is in the right lane (lane=-1) of road segment seg001 exactly
20 meters (s=20) from the road reference point, the pedestrian will start walking to the first target (green
dashed line). The first target is located 30 meters away at s=30. As the lateral offset of the target is also 5.3
meters right of the road reference line, the pedestrian will walk parallel to the road at 4.1 km/h following the
curve shape at an exact distance of 5.3 meters.

After reaching the first target, the pedestrian will turn left to cross the road at a right angle and a speed of 2.8
km/h. While crossing the road, the lateral offset will change from -5.3 to +5.3 and the longitudinal offset will
remain at s=30. The pedestrian is now at the left of the road reference line.

On the other side of the road, the pedestrian will continue walking parallel to the road at a speed of 4.3 km/h
until s=60 has been reached where she will turn right to cross the road again.

After reaching the final target, the pedestrian will rest there till the end of the simulation.

3.1.1.5 Hints and Restrictions

In this section, important information about the concepts explained above are clarified. Please follow these
hints:

• Any occurrence of segment must always refer to a valid road segment ID.
• s must have positive values only; where s="0" always points to the beginning of a road.
• Pedestrians:

o lateralOffset: positive values (in meters) denote positions left of the road reference line;
negative values denote positions right of the road reference line.

o A pedestrian will walk from the previous target (or start position) to the current target by in-
terpolating the lateral and longitudinal offsets linearly.

o The speed of a pedestrian will be constant while moving between two targets and can only be
changed when a target has been reached.

For the sake of completeness, we like to point out known limitations of the road description specification:

• The course of the road cannot be specified very precisely as the underlying generation tool (Easy-
Roads3D Pro) tends to “optimize” the curvature of the road in an unpredictable manner, e.g. angular
shaped curves will be rounded.

• Junctions are restricted to either crossroads or T-junctions where the intersecting roads must be con-
nected exactly at a right angle. This is a requirement of the used road generation and terrain defor-
mation tool.

D5.5 – System abilities (open data) Grant Agreement N. 731593

Dreams4Cars Page 23 of 51

• Road networks can only be defined in a tree-like representation starting with an initial road segment
(root), which is connected to all other segments by junctions. Thus, cyclic road networks cannot be de-
fined with this specification format. This limitation traces back to the underlying road generation tool
as the precise course of a road cannot be predicted. Enormous efforts would be required to make sure
that a road will exactly end at a pre-defined position.

3.1.2 Terrain Generation

This section introduces the terrain generation procedure, which is carried out by the Scene Generator
(./tools/SceneGenerator/), a Unity application based on EasyRoads3D Pro. In the following we explain how
terrain generation works and how the tool can be used.

EasyRoads3D Pro is a road network editor extension for Unity5 which allows rapid generation of custom 3D
road models. The user may start with a simple terrain using the Unity terrain generation tools or load a pre-
defined heightmap to generate a more complex terrain. On top of the terrain, reference points can be placed
by mouse clicks, which will be connected by (curved) road segments in order to construct realistic roads as
shown in Figure 7.

Figure 7: EasyRoads3D Pro – simple road models

Although the software is focused on manual road network generation by a GUI-based editor, EasyRoads3D Pro
comes with an API, which is still under development but already allows executing many important functions of
the application by Unity Scripts. API access is the fundamental requirement to automatize the road generation
process including terrain generation from pre-defined heightmaps, placing intersections, and connecting them
with road segments of arbitrary shape and width.

Another impressive feature of EasyRoads3D Pro, which influenced the decision to utilize this software, is the
automatic deformation of terrain whenever a new road segment is added to undulating terrain (cf. Figure 8).
This allows the creation of negotiable roads with little superelevation and fair inclination angles.

5 https://unity.com/

D5.5 – System abilities (open data) Grant Agreement N. 731593

Dreams4Cars Page 24 of 51

Figure 8: EasyRoads3D Pro – terrain deformation

A limitation of EasyRoads3D Pro at the time of implementation was, that the latest version (3.0 beta) was
lacking documentation and the provided source code was obfuscated. Furthermore, the software did not
provide API functions for all the features of the manual editor (e.g. roundabouts could not be created, and
generated road networks could not be exported to a 3D model format). Instead of exporting 3D models
consisting of terrain and road, we therefore decided to export the terrain only and extract the absolute 2D
coordinates of a road’s centreline to separate text files. The resulting coordinates of the road centrelines could
be used as starting point to re-create road geometries and finally project them on top of the terrain model at a
later stage. Here, we make it a condition that the road reference line of the geometries to be generated in the
next section will be located at the same place on the terrain model where the centreline of the road generated
by EasyRoads3D has been located before.

Technically, the terrain generation process consists of the following steps. First, a road description file is
loaded and processed by the Scene Generator in order to create a new terrain model given by a heightmap
reference in the road description file. After all road segments specified in the RDf have been added to the
terrain using EasyRoads3D Pro, the generation process is finalized by deforming the terrain in order to allow a
smooth transition between terrain and road. The deformed terrain is provided with a texture and exported by
Unity exporting routines to Wavefront (*.obj) format. Furthermore, the pathway of each road segment’s
centreline is stored as 2D point list with absolute coordinates in a separate text file (named after the road
segment ID) before the meshes of the road objects are discarded. The resulting point lists is used by the next
link of the toolchain to compute geometries.

A compiled version of the Scene Generator is available for Windows and Linux and can be executed from the
command line using the following command:

Windows: $ SceneGenerator.exe -input <IF> -output <PLF> -terrain <TF> -display on|off

Linux: $ SceneGenerator.x86_64 -input <IF> -output <PLF> -terrain <TF> -display on|off

Where

-input <IF> <IF> is the path to the input file (e.g. roadDescription.xml)

-output <PLF> <PLF> is the output folder where the point lists will be stored

-terrain <TF> <TF> is the output file path of the terrain model (OBJ format)

-display on|off indicates whether the generation process will be interrupted to display the
terrain model (“on”) or whether the application will be closed
automatically after computation (“off”).

D5.5 – System abilities (open data) Grant Agreement N. 731593

Dreams4Cars Page 25 of 51

Executing the Scene Generator creates a terrain model (including *.obj, *.mtl and texture files) in the given
output folder <TF> and a set of text files containing 2D point lists in the given output folder <PLF>. For each
road segment contained in the road description, a text file is generated containing coordinates of the
segment’s centreline. The fact that these text files are named after the corresponding road segment ID,
highlights the necessity of providing unique road segment IDs.

The following sample command can be used to run the Scene Generator under Windows in order to process
the input file roadDescription.xml:

$ SceneGenerator.exe -input roadDescription.xml -output output\pointlists\ -terrain
output\obj\terrain.obj -display off

3.1.3 Point List to Road Reference Line

The following section explains the transformation of a 2D point list into a geometry that represents the
reference line of a road. This geometry is described as a sequence of primitives of various types. We
differentiate between the following primitives:

• Line: a straight line with zero curvature
• Arc: a curve with constant non-zero curvature
• Spiral: a curve with linear change of curvature (also known as Euler spiral or clothoid)

Disregarding intersections and elevation difference, an arbitrary road can be described by a sequence of the
aforementioned primitives. According to the German road construction act, many turns in rural areas are in
fact constructed using clothoidal parts between line and arc segments to provide a smooth steering phase
when passing the lane section. Furthermore, the OpenDRIVE standard, which is supported by the driving
simulation OpenDS, makes use of these three concepts to describe complex road shapes.

Figure 9: Cornucopia – Fitting primitives to a list of points (colour code: line, arc, spiral)

D5.5 – System abilities (open data) Grant Agreement N. 731593

Dreams4Cars Page 26 of 51

For the computation of a precise reference line (consisting of line, arc, and spiral segments) from a given point
list, the Cornucopia library6 turned out to be the ideal solution. This C++ library is an open-source project
developed by Baran et al. [1] at the Massachusetts Institute of Technology. The algorithm is intended to
approximate a mouse or tablet sketch stroke with a smooth continuous curve consisting of a set of lines,
spirals, and arcs. The input can be derived from 2D coordinates and the resulting geometry concepts exactly
meet the requirements of the OpenDRIVE road description format.

The algorithm applies the following processing steps to a list of 2D points to end up with a fair curve
approximating the input (cf. Figure 9a):

1. Closed curve detection: determine whether the input curve is almost closed, and, if so, make it pre-
cisely closed.

2. Corner detection: determine whether there are sharp corners and remove them.
3. Resampling: to reduce the size of the problem and make the sampling more regular, resample the

sketched stroke in a curvature-sensitive way.
4. Primitive fitting: for every contiguous subsequence of samples, fit a candidate line, spiral, and arc. This

results in an over-complete set of overlapping primitives (cf. Figure 9b).
5. Graph construction: construct a weighted graph with the primitives as nodes and transitions between

primitives as edges, such that weights denote the quality of the transition (cf. Figure 9c). To control
the output of the algorithm, the costs for a line, an arc, and a spiral, for G0, G1, and G2 transitions, for
inflections (points where the curvature changes sign), the approximation error cost and the penalty for
short primitives have been chosen in order to get optimal results for road construction. Table 10 lists
the selected cost setup (also known as “Accurate (G2)” pre-set) for all configurable parameters of the
Cornucopia curve fitting algorithm.

6. Shortest path: find an acceptable shortest path through the graph, validating transitions in the pro-
cess. This step picks out a high-quality segmentation of the input point list into curve primitives and
transitions between them.

7. Merging: enforce the continuity constraints on the chosen primitives by solving a nonlinear program
(cf. Figure 9d).

Parameter Min. Value Value Max. Value

Line cost 0 7.5 20

Arc cost 0 9 30

Clothoid cost 0 15 50

G0 cost 0 50 50

G1 cost 0 50 50

G2 cost 0 0 50

Error cost 0 5 10

Shortness cost 0 1 10

Inflection cost 0 20 100

Table 10: Cornucopia – primitive fitting costs (for reference, minimum and maximum values are provided)

6 https://code.google.com/archive/p/cornucopia-lib

D5.5 – System abilities (open data) Grant Agreement N. 731593

Dreams4Cars Page 27 of 51

In order to integrate the Cornucopia library, we extended the source code by a routine for reading a two-
dimensional point list from a given file and a routine for writing the resulting list of primitives to an output file.
The output file consists of a sequence of line, arc, and spiral primitives as well as the initial position and
orientation of the first primitive. Every subsequent primitive starts in the endpoint of its predecessor with the
same orientation as its predecessor in that point. Line primitives only have a length property, arcs additionally
have a curvature property, and spirals additionally have a second curvature property – one describing the
curvature at the beginning and one at the end. Curvature values in between need to be interpolated linearly.

A compiled version of the modified Cornucopia library is available for Windows and Linux under the name
Point2Geometry Converter (./tools/PointList2Geometry/) and can be executed from the command line as
follows:

Windows: $ P2GConverter.exe <inputFile> <outputFile>

Linux: $ P2GConverter <inputFile> <outputFile>

Where <inputFile> and <outputFile> represent the paths to the input and output files (optional). If these
arguments are not provided, the application will expect a text file named input.txt and create a text file named
output.txt in the same folder (overwriting existing files).

The input list must comply with the pattern depicted in Listing 8 and consist of two or more points, which are
represented as two-dimensional floating-point coordinates (x and y) separated by “;”. Furthermore, the list
must provide exactly one point per line. A sample output of the Point2Geometry Converter is shown in Listing
9.

x1;y1
x2;y2
x3;y3
 ⁞
xn;yn

Listing 8: Point2Geometry Converter – format of the input list

In the next link of the toolchain, the road reference lines of all involved road segments will be merged in order
to create a valid OpenDRIVE file.

3.1.4 Road Reference Lines to OpenDRIVE Road Description

In this section we describe how the resulting road reference lines from the previous link of the toolchain are
combined to a valid OpenDRIVE file. According to Figure 3, this conversion consists of two steps:

1. Geometry Generator: a set of curve primitives is converted to a set of OpenDRIVE geometries
2. Road Generator: a set of OpenDRIVE geometries is inserted into one OpenDRIVE template

In the following, both steps are described in more detail.

3.1.4.1 Geometry Generator

In order to transform curve primitives (resulting from the Point2Geometry Converter) into OpenDRIVE
geometries, all line, spiral, and arc primitives need to be complemented with additional data. Listing 9 shows
some sample output of the Point2Geometry Converter after fitting a sequence of line → spiral → arc →
spiral → line primitives to a list of 2D coordinates. The starting point and initial heading of each curve
primitive is equal to the end point (and heading) of the preceding primitive – except for the first primitive,
which begins at the coordinates and heading given in the <start> element.

D5.5 – System abilities (open data) Grant Agreement N. 731593

Dreams4Cars Page 28 of 51

<road>
 <start x="-283.268" y="-201.359" hdg="3.321"/>
 <geometries>
 <line length="0.486" />
 <spiral length="3.174" curvStart="0.000" curvEnd="0.126" />
 <arc length="9.195" curvature="0.126" />
 <spiral length="3.174" curvStart="0.126" curvEnd="0.000" />
 <line length="0.486" />
 </geometries>
</road>

Listing 9: Sample output of the Point2Geometry Converter

In more detail, the transformation of the XML representation of Listing 9 into OpenDRIVE format (cf. Listing
10) requires the calculation of absolute position data (x, y, hdg) for each geometry. Furthermore, a consistent
s-value representing the offset (in meters) from the beginning of the road reference line needs to be provided.
Even though the data shown in Listing 9 and Listing 10 are equivalent, the OpenDRIVE representation (Listing
10) is much more detailed due to redundancy.

<planView>
 <geometry s="0.0" x="-283.268" y="-201.359" hdg="3.321" length="0.486">
 <line/>
 </geometry>
 <geometry s="0.486" x="-283.746" y="-201.446" hdg="3.321" length="3.174">
 <spiral curvStart="0.000" curvEnd="0.126"/>
 </geometry>
 <geometry s="3.66" x="-286.819" y="-202.220" hdg="3.522" length="9.195">
 <arc curvature="0.126"/>
 </geometry>
 <geometry s="12.856" x="-291.764" y="-209.356" hdg="4.690" length="3.174">
 <spiral curvStart="0.126" curvEnd="0.000"/>
 </geometry>
 <geometry s="16.031" x="-291.409" y="-212.505" hdg="4.891" length="0.486">
 <line/>
 </geometry>
</planView>

Listing 10: OpenDRIVE representation of the sample shown in Listing 9

The tool needed to transform the output of the Point2Geometry Converter into OpenDRIVE format is called
Geometry Generator and is available as executable *.jar file for Windows, Mac OS, and Linux. It can be found
in ./tools/OpenDS_4.9/GeometryGenerator.jar and can be executed from the command line as follows:

$ java -jar GeometryGenerator.jar <inputFile> <outputFile> <headless>

Where

<inputFile> is the path to the input file, e.g. geometryDescription.xml (optional). An XML schema
for the input file can be found in the same folder (geometryDescription.xsd).

<outputFile> is the path to the output file, e.g. openDrive.xodr (optional).

<headless> indicates whether the window displaying the result will be suppressed (optional).

D5.5 – System abilities (open data) Grant Agreement N. 731593

Dreams4Cars Page 29 of 51

If these arguments are not provided, the application will expect a text file named geometryDescription.xml in
the same folder and create a text file named openDrive.xodr in a timestamped subfolder of folder
openDRIVEData. By default, the application will show the graphical result in a separate window (if not
suppressed) as depicted in Figure 10.

The following sample command can be used to run the Geometry Generator in order to process the input file
geometryDescription.xml and generate the output file openDrive.xodr in headless mode (without visual
output):

$ java -jar GeometryGenerator.jar geometryDescription.xml openDrive.xodr headless

Be aware that the implicit execution of the Geometry Generator is not part of the road network generation
toolchain and the aforementioned command will not be contained in the provided shell scripts (*.bat and *.sh
files). Instead, the Geometry Generator will be executed internally by the Road Generator (cf. 3.1.4.2).

Figure 10: OpenDRIVE representation of a sample road segment (road reference line)

3.1.4.2 Road Generator

After transforming the reference line of each road segment into a separate file containing the OpenDRIVE
representation thereof, the last tool of the chain, the Road Generator, can be used to merge all these files into
one file, the OpenDRIVE road description. For this purpose, the initial road description file (cf. 3.1.1) must be
processed a second time since all the information lost during the centre point export (e.g. road width, lane
configuration, speed limit, etc.) must be added to the respective OpenDRIVE geometries in the final output
file. Furthermore, the original road description contains information about how to connect road segments
with each other – either using a direct connection between two adjacent roads (predecessor/successor
relation) or using a custom-built intersection area (cf. Figure 11) in order to connect multiple road segments.

Figure 11: OpenDRIVE representation of a custom-built intersection area

D5.5 – System abilities (open data) Grant Agreement N. 731593

Dreams4Cars Page 30 of 51

The Road Generator is available as executable *.jar file for Windows, Mac OS, and Linux. It can be found in
./tools/OpenDS_4.9/RoadGenerator.jar and can be executed from the command line as follows:

$ java -jar RoadGenerator.jar <inputFile> <timestamp> <headless>

Where

<inputFile> is the path to the input file (RDf), e.g. roadDescription.xml (optional). An XML
schema for the input file can be found in the same folder (roadDescription.xsd).
Furthermore, for each road segment that is defined in the RDf, a separate XML file
(named after the corresponding road segment ID) containing the OpenDRIVE
representation thereof must be provided in the main folder of OpenDS.

<timestamp> is the timestamp of creation, e.g. 2019-11-22_13:45:20 (optional). This timestamp
will be used to create and name a subfolder in the simulator’s project folder in order
to save the generated driving task files (output).

<headless> indicates whether the window displaying the resulting road network will be
suppressed (optional).

If these arguments are not provided, the application will expect a text file named roadDescription.xml in the
same folder and create a subfolder named after the current timestamp in the simulator’s project folder
(./tools/OpenDS_4.9/assets/DrivingTasks/Projects/). By default, the application will show the graphical result
in a separate window (if not suppressed) as depicted in Figure 11.

The following sample command can be used to run the Road Generator in order to process the input file
roadDescription.xml and save the output files to a folder named 2019-11-22_13:45:20 in headless mode
(without visual output):

$ java -jar RoadGenerator.jar roadDescription.xml 2019-11-22_13:45:20 headless

The Road Generator processes the given road description file and expects a separate XML file for each road
segment that is contained in the road description. These XML files must be in the main folder of OpenDS and
be named after the corresponding road segment ID. The content of each geometry file is first transformed into
the OpenDRIVE geometry format by internally executing the Geometry Generator for each XML file. After that,
the OpenDRIVE file (*.xodr) is generated from the resulting OpenDRIVE geometries and further information of
the road description. Finally, the OpenDRIVE file is copied – together with five generic simulation files – to a
timestamped subfolder of the simulator’s project folder ./tools/OpenDS_4.9/assets/DrivingTasks/Projects/.
These simulation files are generated from templates and contain typical parameters and settings used to
launch OpenDS with the generated terrain and OpenDRIVE files. The terrain file which is the output of the
preceding terrain generation process (cf. 3.1.2) is expected to be available in a timestamped subfolder of
./tools/OpenDS_4.9/assets/Scenes/ where both timestamps must be equal. The provided shell scripts (*.bat
and *.sh files) ensure that the same timestamp is used throughout the whole generation process of a road
network.

3.1.5 OpenDS

Finally, terrain, OpenDRIVE, and simulation files need to be processed by the driving simulator in order to
create the final driving environment. When starting OpenDS, first, the terrain model is loaded, then, textured
3D meshes are created according to the OpenDRIVE representation of the road network and projected on top
of the terrain resulting in an exact match due to the terrain deformation applied at the beginning of the
toolchain. Furthermore, the simulation files are processed by OpenDS, which facilitates the simulation of

D5.5 – System abilities (open data) Grant Agreement N. 731593

Dreams4Cars Page 31 of 51

dynamic scene objects (e.g. traffic, obstacles, vehicle pathways, etc.) and allows setting up interaction
between them.

The simulation parameters and settings (also known as “driving task”) are distributed over several files and
consist of the following three concepts: scene, scenario, and interaction which are usually available as XML-
files (scene.xml, scenario.xml, and interaction.xml, respectively) and a file containing simulator settings
(settings.xml). These concepts, their typical file names, and some details about their content are shown in
Table 11.

Driving Task Layer File Name Description

Scene scene.xml (static) objects, geometries, reset points, sounds, images, lights, etc.

Scenario scenario.xml weather, driving car, dynamic vehicles, pedestrians, cyclists, etc.

Interaction interaction.xml trigger conditions, trigger actions (events)

Settings settings.xml general settings, controller/key assignment, codriver settings, etc.

Table 11: OpenDS – layers of a driving task

All four driving task files are generated from templates and can be edited manually in the respective subfolder
of ./tools/OpenDS_4.9/assets/DrivingTasks/Projects/ after the generation process has finished and before the
simulation has started. If some parameter needs to be changed permanently, it might be wise to edit the
corresponding template before starting the generation process. Templates can be found in folder
./tools/OpenDS_4.9/assets/OpenDRIVE/templates/. For instance, one might want to deactivate logging of the
codriver: this could be accomplished for each individual driving task by setting the <enableLog> element to
false in the respective settings.xml or for all future driving tasks by doing so in the template
emptySettingsFile.ftlx.

OpenDS is available as executable *.jar file for Windows, Mac OS, and Linux. It can be found in
./tools/OpenDS_4.9/OpenDS.jar and can be executed from the command line as follows:

$ java -jar OpenDS.jar <inputFile>

Where <inputFile> is the path to the project file (optional). If this argument is not provided, the application
will prompt a selection screen – given that no project file has been specified in the startProperties.properties
file in the simulator’s main folder. A project file consists of pointers to the OpenDRIVE file and the four driving
task files described in Table 11. XML schemas for the validation of these five XML files can be found in
./tools/OpenDS_4.9/assets/DrivingTasks/Schema/.

The following sample command can be used to run OpenDS with a pre-selected driving task file:

$ java -jar OpenDS.jar assets/DrivingTasks/Projects/track1/track1.xml

The road description specification allows placing any number of computer-controlled vehicles at arbitrary
positions on the road. Every vehicle will continuously be driving at its individual maximum speed (without
exceeding the general speed limit) following the lane it has initially been assigned to until a bifurcation is
reached. In order to resolve ambiguity in pathways, a list of preferred turnings (when approaching to an
intersection) can be specified for each vehicle – including the Codriver-controlled car. Figure 12 depicts the
road example from the previous steps rendered by OpenDS including textured meshes and dynamic scene
objects (one Codriver- and two computer-controlled vehicles) interacting with the road network. Each
computer-controlled vehicle is set up to follow an individual target point (cf. Figure 12, green dots) which is

D5.5 – System abilities (open data) Grant Agreement N. 731593

Dreams4Cars Page 32 of 51

moving five meters ahead of the vehicle pivot along the lateral lane centre. Analogously, the trajectory of the
Codriver-controlled vehicle (visualized by red and yellow dots in Figure 12) can be computed.

Figure 12: OpenDRIVE representation of a sample road segment (textured) with dynamic scene objects

Figure 13 depicts a more complex terrain and road network model created by the automatized road
generation toolchain. The resulting 3D models (terrain, road segments, and junctions) have been generated
without human interaction and solely by interpreting the road description specification. As the screenshots
demonstrate, arbitrary slopes and junctions in undulating terrain can be generated.

Figure 13: OpenDS simulation of an automatically generated road network (the inset on the top left fram is a

representation of the codriver motor space (or motor cortex).

D5.5 – System abilities (open data) Grant Agreement N. 731593

Dreams4Cars Page 33 of 51

Every simulation that has been triggered by the automatized road generation toolchain starts OpenDS with the
codriver enabled. If the codriver needs to be disabled (e.g. in order to explore the environment by a human
driver), the respective parameter (<enableConnection>) can be set to false in the corresponding settings.xml.
For permanent deactivation the template (emptySettingsFile.ftlx) could be edited instead. While the codriver is
activated, pressing “M” will show a graphical representation of the current motor cortex state (cf. Figure 13,
upper left).

3.2 Examples of Driving Scenarios
The simulation files of the following sample scenarios (and some more) can be found in the project folder of
the simulation environment (./tools/OpenDS_4.9/assets/DrivingTasks/Projects/). These can be opened with
the provided simulation environment for instant simulation of the respective scenario. For most of the
scenarios, a road description file (RDf) is available which has been used to generate driving scenarios from
scratch. These files can be found in the input folder of the simulation environment (./input/) and be used to re-
generate terrain, road network, and the aforementioned driving scenario files. This step is optional, as ready-
to-use simulation files are provided for each of the examples. Each example contains a table referring to the
respective generation (RDf), simulation, and log files.

The first two sample scenarios (3.2.1 and 3.2.2) demonstrate the features of the automatized terrain and road
generation toolchain and the integration of the Chrono physics engine, respectively. The other scenarios
implement the situations used for simulation fidelity tests described in Chapter 5 of D5.1 – Test Plans,
Methods, and Metrics.

In the folder ./tools/OpenDS_4.9/ a file named startProperties.properties can be found. This file is processed
every time the simulator is started. Editing this file (by uncommenting the respective line) allows to set up one
of the scenarios presented in the following sections. The simulation of the selected scenario can be launched
by executing ./tools/OpenDS_4.9/OpenDS.jar.

3.2.1 Generated Terrain and Road Network Scenario

This scenario demonstrates the basic features of the automatized terrain and road generation toolchain. From
a single road network description file, the user can generate a driving scenario including terrain, crossroads,
traffic, and pedestrians. Traffic and pedestrians will follow a pre-defined pathway interacting with the
Codriver-controlled car. The Bullet engine is used to render physics. Figure 14 (left) shows the layout of the
road network, highlighting the positions of the traffic participants, which are shown in Figure 14 and are:
Codriver-controlled vehicle (arrow), pedestrian (circle), and traffic vehicle (rectangle).

Figure 14: Generated scenario including terrain, crossroads, traffic, and pedestrians

D5.5 – System abilities (open data) Grant Agreement N. 731593

Dreams4Cars Page 34 of 51

It is possible to disable the codriver. For this, the codriver settings, which can be found in the corresponding
settings.xml file, must be adjusted as shown in Listing 11. After disabling the codriver and restarting OpenDS,
the vehicle can be controlled by keyboard, steering wheel, and pedals.

<codriver>
 <enableConnection>false</enableConnection>
</codriver>

Listing 11: Disabling the codriver

Table 12 provides the location of the corresponding road description file, the simulation file, and the log data
which is produced when running the scenario.

Data Location

Generation ./input/terrainTest.xml

Simulation ./tools/OpenDS_4.9/assets/DrivingTasks/Projects/TerrainTest/terrainTest.xml

 Results ./tools/OpenDS_4.9/log/TerrainTest/

Table 12: Terrain example – Location of description files and resulting data

3.2.2 Chrono Scenario

The terrain and road network used in this scenario is an exact copy of the one in the previous scenario. That is
why the generation script (cf. Table 13) is the same. The only difference is the use of the Chrono engine for
physics rendering. The user can experience the differences between both engines by driving the steering car
manually (instead of having it controlled by the codriver). Differences in the simulation files can be checked
out by comparing them.

In general, every scenario can be run with the Chrono physics engine by specifying what part of the terrain to
render by the Chrono engine and what Chrono-approved vehicle to use, no matter whether it will be
controlled by the Codriver7 or a human. While the Bullet physics engine can compute collisions of any two
scene objects, the Chrono engine is limited to calculate the collision of two specific objects: terrain and
vehicle. Thus, the user can select which scene object to use as “terrain” and which scene object to use as
“vehicle”. Since the collision computation can be very expensive, a terrain as simple as possible should be
used. The terrain must be available in Wavefront (*.obj) format and must be defined in the scene.xml (as
usual). Furthermore, it must be referenced in the settings.xml by its unique ID, as shown in Listing 12. In this
way the editor can make sure that only those surface triangles of a given track that are reachable by the car
will be added to the Chrono engine.

7 However, please note that the Codriver installation in OpenDS uses a generic (albeit adaptive) inverse model control
that cannot not be perfectly matched to all possible Chrono-vehicle dynamics.

In the real vehicles and in the CarMaker environment used for other parts of Dreams4Cars the inverse models were
tailored to the exact vehicle dynamics (e.g., D5.4). To carry out studies concerning control of vehicle with focus on the real
dynamics and actuator lags, tailored inverse model would be required.

D5.5 – System abilities (open data) Grant Agreement N. 731593

Dreams4Cars Page 35 of 51

<chrono>
 <terrainModel ref="terrain_45" />
</chrono>

Listing 12: Adding terrain to Chrono physics simulation

The vehicle for Chrono can be specified in the scene.xml in the usual way. OpenDS can detect whether a Bullet
or Chrono vehicle has been specified and load the respective physics engine. If a Bullet vehicle has been given,
Chrono will not be started – even if a terrain has been specified as shown in Listing 12. Conversely, if a Chrono
vehicle has been specified without selecting a terrain, the vehicle will be simulated in Chrono, however, with
no terrain to drive on the vehicle will fall infinitely. Currently, only one vehicle (included in the vehicle
selection of OpenDS) has been prepared for the use with Chrono:

Models/Cars/drivingCars/CitroenC4_Chrono/Car.scene

If this vehicle is used, more than 100 vehicle parameters can be adjusted, by modifying the *.json files in the
subfolders of: assets/Chrono/vehicle/

Table 13 provides the location where to find the corresponding road description file and the simulation file.
The generation file (RDf) is the same as in the previous example since the only difference is the use of a
Chrono vehicle. After the generation of the terrain and road network, the editor must replace the Bullet
vehicle (default) by a Chrono vehicle. This replacement has been done in the provided simulation project.

Data Location

Generation ./input/terrainTest.xml

Simulation ./tools/OpenDS_4.9/assets/DrivingTasks/Projects/ChronoTest/chronoTest.xml

 Results (not run by codriver)

Table 13: Chrono example – Location of description files

3.2.3 Speed Adaptation

In this test, the Codriver-controlled car will be driven on a two-lane road. The main goal is to test the
longitudinal inverse model and low-level control. This includes testing speed limit adaptation. The test is
carried out both on a straight and a curvy road.

3.2.3.1 Straight Road

Figure 15: Speed adaptation on a straight road

80

50

40

90

D5.5 – System abilities (open data) Grant Agreement N. 731593

Dreams4Cars Page 36 of 51

The Codriver-controlled car is placed at the beginning of a straight two-lane road 4 km long. Every 500 to 1000
meters a new speed limit – implemented in the semantic annotation of the road (OpenDRIVE) – appears. The
road signs depicted in Figure 15 are used as visual markers (for the human viewer) only. The Codriver receives
the speed limit from the map. The speed limits are in the following order: 30, 80, 50, 100, 40, STOP.

Table 14 provides the location of the corresponding road description file, the simulation file, and the log data
which is produced when running the scenario.

Data Location

Generation ./input/speedAdaptationTest1.xml

Simulation ./tools/OpenDS_4.9/assets/DrivingTasks/Projects/SpeedAdaptationTest1/

speedAdaptationTest1.xml

Results ./tools/OpenDS_4.9/log/SpeedAdaptationTest1/

Table 14: Speed adaptation example 1 – Location of description files and resulting data

3.2.3.2 Curvy Road

The Codriver is placed at the beginning of a curvy two-lane road of 4 km length. Again, every 500 to 1000
meters a new (OpenDRIVE) speed limit appears. The corresponding scenario is shown in Figure 16. The speed
limits are in the following order: 30, 80, 50, 100, 40, STOP.

Figure 16: Speed adaptation on a curvy road

In curvy roads the speed choice of the Codriver depends on the speed limits, but, also on the curvature of the
road according to [2], [3]. Thus, the Codriver might choose to drive at a lower velocity than the one given by
the speed limit.

Table 15 provides the location of the corresponding road description file, the simulation file, and the log data
which is produced when running the scenario.

Data Location

Generation ./input/speedAdaptationTest2.xml

Simulation ./tools/OpenDS_4.9/assets/DrivingTasks/Projects/SpeedAdaptationTest2/

speedAdaptationTest2.xml

Results ./tools/OpenDS_4.9/log/SpeedAdaptationTest2/

Table 15: Speed adaptation example 2 – Location of description files and resulting data

D5.5 – System abilities (open data) Grant Agreement N. 731593

Dreams4Cars Page 37 of 51

3.2.4 Car Following

In this test, the Codriver-controlled car follows a leading vehicle on a one-lane road (in order to prevent the
Codriver from overtaking). The main goal is to test the car following behaviour in response to different
behaviours of the leading vehicle. A particular case is approaching a slower or stationary object. The leading
car is set up to change velocity in an unpredictable way. Due to sudden large acceleration phases of the
leading car, there are several approaches of the Codriver-controlled car to the leading car. The test is carried
out using both a straight and a curvy road scenario.

3.2.4.1 Straight Road

The Codriver-controlled car is placed at the beginning of a straight one-lane road 4 km long with different
speed limits. The Codriver car is instructed to ignore the speed limits and to drive at 100 km/h whenever
possible. Since the leading vehicle obeys the speed limits exactly, the Codriver-controlled car must adjust its
speed in order not to collide.

Figure 17: Car following on a straight road

Table 16 provides the location of the corresponding road description file, the simulation file, and the log data
which is produced when running the scenario.

Data Location

Generation ./input/carFollowingTest1.xml

Simulation ./tools/OpenDS_4.9/assets/DrivingTasks/Projects/CarFollowingTest1/carFollowingTest1.xml

 Results ./tools/OpenDS_4.9/log/CarFollowingTest1/

Table 16: Car following example 1 – Location of description files and resulting data

3.2.4.2 Curvy Road

In this version, the road is curvy. Apart from this, the setup is exactly the same as described for the straight
road (cf. 3.2.4.1). The scenario is shown in Figure 18. While the Codriver ignores the speed limits, it still
complies with the speed choice in curves mentioned above,

Table 17 provides the location of the corresponding road description file, the simulation file, and the log data
which is produced when running the scenario.

70

50

30

80

D5.5 – System abilities (open data) Grant Agreement N. 731593

Dreams4Cars Page 38 of 51

Figure 18: Car following on a curvy road

Data Location

Generation ./input/carFollowingTest2.xml

Simulation ./tools/OpenDS_4.9/assets/DrivingTasks/Projects/CarFollowingTest2/carFollowingTest2.xml

 Results ./tools/OpenDS_4.9/log/CarFollowingTest2/

Table 17: Car following example 2 – Location of description files and resulting data

3.2.5 Pedestrian Approaching

In this test the Codriver-controlled car drives on a straight road. The goal is to test the adaptation of speed in a
pedestrian crossing situation. In further tests, the collision avoidance by changing lanes will additionally be
examined. Once a pedestrian is approaching the road, the Codriver should open a temporal gap (and/or
laterally deviate from the lane) to avoid the pedestrian.

3.2.5.1 Single-lane Road

The single-lane road scenario has been selected in order to test the adaptation of speed exclusively. The car is
set up to follow the lane at 50 km/h. Along the road, three pedestrian-crossing events (one every 500 meters)
can be found. For the human viewer, the crossing positions are visually marked by a pair of pedestrian-crossing
signs. These signs as well as the intended crossing positions are not forwarded to the Codriver. Figure 19 (left)
shows a sketch of the track, including the Codriver-controlled vehicle (arrow) and the three pedestrians
(circles). The other images of Figure 19 show the three pedestrians.

Figure 19: Pedestrian approaching on a one-lane road

The first pedestrian has been set up to cross the road from left to right at a constant speed of 4 km/h without
stopping. She arrives at the road centre exactly at the same time as the Codriver-controlled car would arrive

D5.5 – System abilities (open data) Grant Agreement N. 731593

Dreams4Cars Page 39 of 51

(cf. Figure 19, image 2). The Codriver must slow down and eventually stop the car. When the pedestrian is out
of the way, the Codriver resumes driving.

In the second situation, the pedestrian has been set up to cross the road from right to left at a constant speed
of 4 km/h. The timing is exactly as before; however, the pedestrian stops walking suddenly when arriving at
the sidewalk (cf. Figure 19, image 3). At that precise moment, the Codriver was already going stops the vehicle,
but after a while, the Codriver resumes driving and passes the waiting pedestrian with caution.

The third pedestrian has been set up to cross the road from left to right at a constant speed of 4 km/h without
stopping. Since the pedestrian arrives too late at the intersection point (cf. Figure 19, image 4), the Codriver-
controlled car goes on driving without reducing speed.

Table 18 provides the location of the corresponding road description file, the simulation file, and the log data
which is produced when running the scenario.

Data Location

Generation ./input/pedestrianApproachingTest1.xml

Simulation ./tools/OpenDS_4.9/assets/DrivingTasks/Projects/PedestrianApproachingTest1/
pedestrianApproachingTest1.xml

 Results ./tools/OpenDS_4.9/log/PedestrianApproachingTest1/

Table 18: Pedestrian approaching example 1 – Location of description files and resulting data

3.2.5.2 Two-lane Road

The Codriver-controlled car is placed at the beginning of a straight two-lane road of 2 km length. The
additional lane to the left provides space for lateral evasive manoeuvres. The car is set up to follow the right
lane at 50 km/h. Along the road, four pedestrian-crossing events (one every 500 meters) can be found. Figure
20 (left) shows a sketch of the track including the Codriver-controlled vehicle (arrow) and the four pedestrians
(circles). The other images of Figure 20 show the car view of the four pedestrians.

Figure 20: Pedestrian approaching on a two-lane road

The first pedestrian has been set up to cross the road from left to right at a constant speed of 4 km/h without
stopping. She arrives at the centre of the right lane exactly at the same time the Codriver-controlled car would
arrive (cf. Figure 20, image 2). The situation is an copy of the first pedestrian situation described in 3.2.5.1
except for the additional lane to the left. The reaction of the Codriver in this situation is reducing speed and
using the left lane for collision avoidance – as one can see in the planned trajectory visualized by pink dots in
Figure 20 (image 2). After passing the pedestrian, the Codriver changes back to the right lane and continues

D5.5 – System abilities (open data) Grant Agreement N. 731593

Dreams4Cars Page 40 of 51

driving. This situation, but with standing pedestrian on the lane side, has been reproduced with the real
vehicle MIA car (see D5.4).

In the second situation, the pedestrian has been set up to cross the road from right to left at a constant speed
of 4 km/h without stopping. Since the pedestrian is already leaving the lane centre when the Codriver-
controlled car approaches to the intersection point, no further action of the Codriver is required (cf. Figure 20,
image 3).

The setup of situation 3 is an copy of situation 2. However, the pedestrian suddenly stops walking in the centre
of the right lane (cf. Figure 20, image 4). The Codriver, which intended to pass behind the pedestrian (as in
situation 2), must adapt to the change and a lane change to the left is initiated – as indicated by the planned
trajectory. After passing the pedestrian (with reduced speed), the Codriver changes back to the right lane and
continues driving.

The fourth pedestrian has been set up to cross the road from left to right at a constant speed of 4 km/h
without stopping. Since the pedestrian arrives too late at the intersection point (cf. Figure 20, image 5), the
Codriver-controlled car goes on driving without reducing speed.

Table 19 provides the location of the corresponding road description file, the simulation file, and the log data
which is produced when running the scenario.

Data Location

Generation ./input/pedestrianApproachingTest2.xml

Simulation ./tools/OpenDS_4.9/assets/DrivingTasks/Projects/PedestrianApproachingTest2/
pedestrianApproachingTest2.xml

 Results ./tools/OpenDS_4.9/log/PedestrianApproachingTest2/

Table 19: Pedestrian approaching example 2 – Location of description files and resulting data

3.2.5.3 Two-lane Road with Oncoming Traffic

The Codriver-controlled car is placed at the beginning of a straight two-lane road of 2 km length. The car is set
up to follow the right lane at 50 km/h. After 500 meters of driving a pedestrian crossing situation including
oncoming traffic is found.

Figure 21: Pedestrian approaching on a two-lane road with oncoming traffic

The pedestrian has been set up to cross the road from left to right at a constant speed of 4 km/h without
stopping. The pedestrian arrives at the centre of the right lane exactly at the same time as the Codriver-
controlled car would arrive (cf. Figure 21, image 2). Since the situation is similar to the first pedestrian

D5.5 – System abilities (open data) Grant Agreement N. 731593

Dreams4Cars Page 41 of 51

situation described in 3.2.5.2, the Codriver plans to pass behind the pedestrian using the left lane (cf. planned
trajectory in Figure 21, image 3). Exactly in this moment, the oncoming car (which is driving at 50 km/h) enters
the detection range of the simulate sensors of the Codriver. Hence, changing the lane will avoid a collision with
the pedestrian, but not with the car. Thus, the Codriver decides to stay in the lane and stops the vehicle (cf.
planned trajectory in Figure 21, image 4). As soon as the pedestrian is out of the way, the Codriver resumes
driving (cf. Figure 21, image 5).

Table 20 provides the location of the corresponding road description file, the simulation file, and the log data
which is produced when running the scenario.

Data Location

Generation ./input/pedestrianApproachingTest3.xml

Simulation ./tools/OpenDS_4.9/assets/DrivingTasks/Projects/PedestrianApproachingTest3/
pedestrianApproachingTest3.xml

 Results ./tools/OpenDS_4.9/log/PedestrianApproachingTest3/

Table 20: Pedestrian approaching example 3 – Location of description files and resulting data

3.2.6 Lane Following

In this test the Codriver-controlled car drives on a curvy road. The main goal is to test the inverse model and
low-level control for lateral control.

3.2.6.1 Road with Moderate Curves

The Codriver-controlled car is placed in the right lane at the beginning of a curvy 3-km-long two-lane road. The
lane width is 3.0 meters and the curve radii are kept within reasonable limits like they can be found in real-
world environments. There is no speed limit; however the Codriver will have to adjust the speed to the
upcoming curvature [2], [3].

Figure 22 provides a sketch of the track (left image) and a selection of screenshots of some curves used in the
test.

Figure 22: Lane following on a road with moderate curves

Table 21 gioves the location of the corresponding road description file, the simulation file, and the log data
which is produced when running the scenario.

D5.5 – System abilities (open data) Grant Agreement N. 731593

Dreams4Cars Page 42 of 51

Data Location

Generation ./input/laneFollowingTest1.xml

Simulation ./tools/OpenDS_4.9/assets/DrivingTasks/Projects/LaneFollowingTest1/
laneFollowingTest1.xml

 Results ./tools/OpenDS_4.9/log/LaneFollowingTest1/

Table 21: Lane following example 1 – Location of description files and resulting data

3.2.6.2 Road with narrower Curves

The Codriver-controlled car is placed on the right lane at the beginning of a road with narrower curves. The
track is 5 km long and consists of two lanes with width of 2.60 meters. There is no speed limit, however, the
Codriver will have to adjust the speed to the upcoming curvature in order to stay in the lane.

Figure 23 provides a sketch of the track (left image) and a selection of screenshots of some curves used in the
test (from the driver’s perspective and from a bird’s view).

Figure 23: Lane following on a road with intense curves

Table 22 provides the location of the corresponding road description file, the simulation file, and the log data
which is produced when running the scenario.

Data Location

Generation ./input/laneFollowingTest2.xml

Simulation ./tools/OpenDS_4.9/assets/DrivingTasks/Projects/LaneFollowingTest2/
laneFollowingTest2.xml

 Results ./tools/OpenDS_4.9/log/LaneFollowingTest2/

Table 22: Lane following example 2 – Location of description files and resulting data

3.2.7 Overtaking a Slow Vehicle

In this test, the Codriver-controlled car drives on a two-lane road. The goal is to demonstrate the lane change
and overtake abilities at different speeds and different oncoming traffic situations. The test is carried out using
the straight and the curvy road scenarios from 3.2.3.

D5.5 – System abilities (open data) Grant Agreement N. 731593

Dreams4Cars Page 43 of 51

3.2.7.1 Straight Road

The Codriver is set up to obey the speed limits while coping with four situations of slow vehicles ahead. Placing
those vehicles at different positions allows to examine the Codriver behaviour at different speeds. Figure 24
provides a sketch of the track (left) and screenshots of possible overtaking situations: overtaking a slow
vehicle, overtaking a slow vehicle while coping with oncoming traffic, and overtaking more than one slow
vehicle at once. It should be reminded that these behaviours (as well as all the other examples) are not
programmed but they are emergent behaviours produced by the agent sensorimotor architecture (D2.2, D2.3,
D7.2 and D7.3):

Figure 24: Overtaking on a straight road

The first encounter with a slow vehicle can be found in a speed limit zone of 70 km/h. Since the leading vehicle
is driving at 20 km/h and there is no traffic in the opposite direction, the Codriver changes the lane to overtake
(cf. Figure 24, image 2). After passing the vehicle, the Codriver goes back into the right lane and continues
driving at 70 km/h.

The second encounter is located in the same speed limit zone (70 km/h) with a vehicle ahead driving at 25
km/h. Since the left lane is blocked by two oncoming vehicles (cf. Figure 24, image 3), the Codriver needs to
decelerate in order to not collide with the vehicle ahead. Once the left lane is clear, the Codriver accelerates
again and changes into the left lane to initiate the overtaking manoeuvre as shown in Figure 25.

Figure 25: Overtaking on a straight road with oncoming traffic

The third situation occurs at a speed of 50 km/h. The Codriver is supposed to overtake two vehicles at the
same time (cf. Figure 24, image 4), as the headway between both vehicles is not sufficient to go back into the
lane after overtaking the first vehicle. The vehicles to overtake travel at a speed of 30 km/h. The detailed
overtaking manoeuvre is shown in Figure 26.

30

70

30

50

D5.5 – System abilities (open data) Grant Agreement N. 731593

Dreams4Cars Page 44 of 51

Figure 26: Overtaking more than one vehicle at once on a straight road

The fourth situation takes place in a speed limit zone of 30 km/h and the vehicle to overtake drives at 20 km/h.
As there is no oncoming traffic, the Codriver changes lane in order to initiate the overtaking manoeuvre even
with a minimum speed difference (cf. Figure 24, image 2).

Table 23 provides the location of the corresponding road description file, the simulation file, and the log data
which is produced when running the scenario.

Data Location

Generation ./input/overtakingTest1.xml

Simulation ./tools/OpenDS_4.9/assets/DrivingTasks/Projects/OvertakingTest1/overtakingTest1.xml

 Results ./tools/OpenDS_4.9/log/OvertakingTest1/

Table 23: Overtaking example 1 – Location of description files and resulting data

3.2.7.2 Curvy Road

The Codriver has to cope with the same overtaking situations as in the previous version (cf. 3.2.7.1) but on a
curvy road. Modified speed limits are passed in the following order: 70, 50, 80, 30, STOP. Screenshots are
shown in Figure 27.

Figure 27: Overtaking on a curvy road

The first and second encounter with slow vehicles take place in a speed limit zone of 70 km/h under the same
conditions, and results as described in 3.2.7.1. Notably, the Codriver selects rather straight segments to
overtake vehicles (a higher-level biasing loop prevents lane change in curves, see D2.2, D2.3m, D/.2 and D7.3) .
The third situation (overtaking two vehicles at the same time) occurs – this time – at a speed of 80 km/h and

D5.5 – System abilities (open data) Grant Agreement N. 731593

Dreams4Cars Page 45 of 51

the final situation again at 30 km/h. The conditions of situation 3 and 4 are equal to the ones described in
3.2.7.1. While the result of situation 3 is the same as in 3.2.7.1, the Codriver does not overtake the vehicle of
situation 4 because approaching the curve (this is a notable example of biasing behaviours).

Table 24 provides the location of the corresponding road description file, the simulation file, and the log data
which is produced when running the scenario.

Data Location

Generation ./input/overtakingTest2.xml

Simulation ./tools/OpenDS_4.9/assets/DrivingTasks/Projects/OvertakingTest2/overtakingTest2.xml

 Results ./tools/OpenDS_4.9/log/OvertakingTest2/

Table 24: Overtaking example 2 – Location of description files and resulting data

3.2.8 Lane Change with Stationary Vehicles

The goal of this test is to force a lane change in a safe and reproducible scenario. This can be achieved by e.g.
putting two (or more) stationary vehicles in two lanes so that the Codriver is forced to perform a second lane
change after the first stationary vehicle has been passed.

In this test, the Codriver-controlled car is placed on the right lane at the beginning of a straight 4-km-long
road. Every 500 to 1000 meters the Codriver faces stationary vehicles, forcing lane change. In order to span
different situations, the speed of the Codriver-controlled vehicle and the lane configuration differ in each
situation. The Codriver is set up to obey the speed limits and to drive in the rightmost lane whenever possible.
Speed limits are in the following order: 40, 70, 50, 80, 30, STOP.

Figure 28: Lane change with stationary vehicles

Figure 28 gives a sketch of the track’s speed limits and screenshots of four different situations including
expeted paths to pass the stationary vehicles: 1) using the opposite direction lane, 2) using same direction
lane, 3) performing a double lane change, and 4) performing several consecutive lane changes.

The first encounter with two stationary vehicles (Figure 29) occurs at the speed of 40 km/h. The first obstacle
is located in the right lane forcing the Codriver to change to the left lane, which is heading in the opposite
direction. At a headway of 30 meters, the second stationary obstacle appears in the left lane making the
Codriver to change back into the right lane.

40

70

80

50

D5.5 – System abilities (open data) Grant Agreement N. 731593

Dreams4Cars Page 46 of 51

Figure 29: Bypassing two stationary vehicles using the opposite direction lane

For the second situation, the limit becomes 70 km/h and an additional lane appears to the right (same
direction), resulting in a total of two lanes in driving direction and one in opposite direction. The Codriver-
controlled car changes to the rightmost lane and approaches to the second situation (Figure 30).

In the second situation, the first obstacle is located in the right lane forcing the Codriver to change to the left
lane, which is heading in the same direction. At a headway of 60 meters (higher distance due to higher speed),
the second obstacle appears in the left lane. The Codriver must change back into the right lane in order not to
collide or infringe the highway code by crossing a solid line.

Figure 30: Bypassing two stationary vehicles using the left lane (same direction)

Figure 31: Bypassing three stationary vehicles by two consecutive lane changes (same direction)

In the third situation (Figure 31), the Codriver enters a speed limit zone of 50 km/h and another lane appears
to the right (same direction), resulting in a total of three lanes in the driving direction and one in the opposite
direction. The Codriver-controlled car changes to the rightmost lane and approaches to the third stationary

D5.5 – System abilities (open data) Grant Agreement N. 731593

Dreams4Cars Page 47 of 51

vehicles situation. Then the Codriver finds the right and centre lanes blocked, forcing it to perform two
consecutive lane changes to the left (Figure 31).

Figure 32: Bypassing six stationary vehicles by several consecutive lane changes (same direction)

The final situation occurs in a speed limit zone of 80 km/h and a lane configuration of one opposite and three
same direction lanes. The sequence of obstacles is rightàleftàright, where the last obstacle blocks the right
and centre lane (cf. Figure 32, image 1). While approaching, the Codriver changes to the centre lane in order to
bypass the first obstacle in the right lane. After 50 meters, the next obstacle appears in the centre and left
lane, forcing the Codriver-controlled vehicle to change back into to right lane (cf. Figure 32, image 2). Another
50 meters further ahead the road, and the final obstacle appears in the right and centre lane (cf. Figure 32,
image 3 and 4) forcing the Codriver to perform two consecutive lane changes to the leftmost lane. After
passing all obstacles, the Codriver returns back to the rightmost lane (cf. Figure 32, image 5).

Table 25 provides the location of the corresponding road description file, the simulation file, and the log data
which is produced when running the scenario.

Data Location

Generation ./input/obstacleTest.xml

Simulation ./tools/OpenDS_4.9/assets/DrivingTasks/Projects/ObstacleTest/obstacleTest.xml

 Results ./tools/OpenDS_4.9/log/ObstacleTest/

Table 25: Obstacle example – Location of description files and resulting data

D5.5 – System abilities (open data) Grant Agreement N. 731593

Dreams4Cars Page 48 of 51

3.3 Open Software and Documentation
The latest version of the simulation environment (version 1.5, as of 1st October 2019) including the following
main features is available in ZENODO8 free for research, studies and benchmarks. It includes:

• the automatized terrain and road generation toolchain,
• the OpenDS driving simulation (version 4.9), based on the jMonkey Engine (version 3.1.0),
• the Codriver agent (version 9.6.1204), and
• the integration of the Chrono physics engine (version 4.0.0) into OpenDS.

The above components will be maintained and updated with new versions of the modules, when they will be
ready and tested. Also, bug reports and new features may be requested.

Figure 33 shows the components of the simulation environment and the flow of data.

Figure 33: Building blocks of the simulation environment (final version)

In addition to the software components mentioned above, ready-to-use driving scenarios with videos (cf.
Section 3.2) have been uploaded to ZENODO demonstrating the capabilities of the final Codriver
implementation. For each driving scenario, the following data are available (cf. Figure 33, text files):

• one scenario description file,
• several simulation files (including a terrain model and an OpenDRIVE road description),
• two log files (representing the bidirectional communication between Codriver and OpenDS).
• ready to view videos (for some scenario)

8 https://zenodo.org/communities/dreams4cars/ (DOI: 10.5281/zenodo.3582054).

D5.5 – System abilities (open data) Grant Agreement N. 731593

Dreams4Cars Page 49 of 51

Processing the scenario description of one of the examples by the terrain and road generation toolchain will
re-generate the respective simulation files (including terrain and OpenDRIVE file), which have been included in
the upload for the reader’s convenience. Processing the simulation files of one of the examples by OpenDS will
re-generate the respective logfiles, which, again, have been included in the upload for the reader’s
convenience.

Ready to view videos are also available for quick evaluation.

Table 26 gives an overview of all provided software components including the license and operating system
compatibility (W = Windows, L = Linux, M = MacOS). Furthermore, the availability of the source code and the
programming language/framework used to implement the software component is shown in the table.

Software Component Implemen-
tation License Source

Code
Binaries

W L M

OpenDS

Simulation Core Java GNU GPL

OpenDRIVE Integration Java GNU GPL

Chrono Integration Java GNU GPL

Codriver Integration Java GNU GPL

jMonkey Engine Renderer, Bullet Physics Java BSD-3

Chrono Engine OpenDS adaptation C++ BSD-3

Automatized
Terrain and
Road Genera-
tion Toolchain

Scene Generator Unity (C#) GNU GPL

PointList2Geometry Converter C++ GNU GPL

Geometry Generator Java GNU GPL

Road Generator Java GNU GPL

Codriver Server / Library C++ 9

Table 26: Overview of provided software components including license, source code availability and OS compatibility

As far as no restrictions of the underlying libraries apply, most software components have been published
under the GNU GPL v3 (GNU General Public License Version 3) open-source license, which allows the user to
copy, distribute and modify the software as long as changes/dates are tracked in source files. Any
modifications to it or software including GPL-licensed code must also be made available under the GPL along
with build & install instructions.

9 The license for the Codriver library is given as a separate license file in the repository.

D5.5 – System abilities (open data) Grant Agreement N. 731593

Dreams4Cars Page 50 of 51

Except for the Codriver and some external resources (e.g. EasyRoads 3D Pro) used by the terrain and road
generation toolchain, the respective source code is enclosed in the software submission. In order to build the
terrain and road generation toolchain from sources, one needs to purchase a license for Unity and EasyRoads
3D Pro, first. The additional source code is open and contained in the upload. Documentation and further
information about how to build the source code and run the software can be found next to the respective
component.

D5.5 – System abilities (open data) Grant Agreement N. 731593

Dreams4Cars Page 51 of 51

4 Bibliographical References
[1] I. Baran, J. Lehtinen, J. Popović, «Sketching Clothoid Splines Using Shortest Paths», Computer Graphics

Forum, 29: 655-664 (http://people.csail.mit.edu/ibaran/papers/2010-EG-Curves.pdf).
[2] P. Bosetti, M. Da Lio, and A. Saroldi, “On the Human Control of Vehicles: an Experimental Study of

Acceleration,” Eur. Transp. Res. Rev., 2013, doi: 10.1007/s12544-013-0120-2.
[3] P. Bosetti, M. Da Lio, and A. Saroldi, “On Curve Negotiation: From Driver Support to Automation,” IEEE

Trans. Intell. Transp. Syst., vol. 16, no. 4, pp. 2082–2093, 2015, doi: 10.1109/TITS.2015.2395819.

