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1 Final Report Public Summary 
Deliverable D7.2 (the confidential counterpart of this document) gives a retrospective analysis of how our vision 
of Cognition for Autonomous Driving evolved.  

Overall the present document can be regarded as summary of that analysis. It is also an anticipation of a position 
paper that will be shortly submitted (so details that are not disclosed here are saved for a future journal work). 

For what is relevant for this document, in our analysis, we focus on the challenges and opportunities for Cogni-
tion in Autonomous Driving. 

2 Challenges in Autonomous Driving 
We start observing that the assumptions that humans are bad drivers and that driving can be “automated” are 
superficial. In reality the average fatality rate of human driving is 1 every 100 million miles. This figure includes 
all types of drivers (inattentive, young, drunk, etc.). A senior attentive driver would be much better. Hence, if 
safety has to be used as the main motivation for automated vehicles, mature automated vehicles should target 
much better figures [1], [2]. On the other hand, reports say that the progress in the number of autonomously 
driven miles is not very fast [3], [4] and plagued by many corner cases, e.g.:  [5].  

An example (outlined in D7.2) of a not-so-rare motorway situation that could become a corner case is used to 
illustrate the difference between a Deep Neural Network for semantic segmentation (often referred as being 
full-fledged AI in itself, which is not true) and Cognition; only in the latter case, an intelligent system can auton-
omously make predictions of what might happen and use predictions to elaborate behaviours. 

The architecture almost universally adopted for automated driving systems is the sense-think-act paradigm [6], 
[7]. We criticize this choice (which is not a credible model for human intelligence [8]–[21]) arguing that it is this 
architecture that carries in its own nature the reasons for the endless emergence of corner cases (see also [22]). 
It actually works well in situations corresponding to symbols and behaviours that have been programmed, but 
it is not economical when the number of corner cases (each with different graduation) is virtually infinite. A 
brute force approach may suggest that, with sufficient testing and developments, all corner cases will be sooner 
or later discovered, programmed, and a final (how much complex?) complete software will be developed; but 
there actually is little evidence of this assumption (e.g., [3], [4]). In addition, regardless of whether, given enough 
resources, sooner or later a brute force approach will yield us a fully functioning Level 4-5 automated car, the 
question remains that this way is very expensive in terms of resources to be committed and yields very complex 
software systems. 

End-to-end approaches are also considered [23]. Even if it is possible to explain to which features end-to-end 
trained networks respond [24], that still questions how decisions are taken. Besides that –not to mention exam-
ple cases of possible failures [25]–, a monolithic end-to-end network does not produce behaviours as a compe-
tition between affordances: the priming of the possible actions and the selection of the best option are inti-
mately entangled (there is no indication of which other potential decisions might have been considered and 
discarded). Furthermore, the network is not adaptive: the output of the network is not broken into hierarchical 
levels of intentions. So, one thing might be the intention of achieving one particular position in the lane, another 
is the exact steering angle to be used for that, which depends on the particular dynamics of the driven vehicle. 
If the vehicle were different, or if the vehicle dynamics changes because of environmental and operating condi-
tions, the network might need to be retrained. 

3 Opportunities for Cognition in Autonomous Driving 
Dreams4Cars was informed by the idea that thinking is a simulation process [26]: loops of simulated actions that 
elicits simulated perception. There may be inline simulations when, for example, an agent makes simulations in 
parallel with the course of actions. There may also be offline simulations where at a separate time (with less 
time constraints) alternative situations are imagined and used to elaborate appropriate action strategies. This 
involves both high-level behaviours (e.g., how to negotiate a particular traffic situation) as well as lower-level 
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control (e.g., which exact steering control to use on a slippery road). Making an (imperfect) parallelism with 
human offline forms of cognition, we could, for example, argue that in REM sleep higher level behaviours are 
synthetized; whereas there is some evidence that at stage 2 sleep inverse model for motor control may be syn-
thetized [27]. 

Of course, during the development of Dreams4Cars many other literature findings have influenced our work. 
We mention, among the others, the organization of brain neural networks in the cerebellum [28], [29], in the 
dorsal stream [30] and in the basal ganglia [31]–[33]; the topographic organization of many brain areas and in 
particular of the motor cortex [34], [35]; the affordance competition hypothesis [18]; where and how predictions 
occur in the brain [17]; the notion of episodic versus embodied simulation [36] (also related to distinction be-
tween declarative and procedural prediction [17]); intentional biasing action selection [37] (this in particular has 
provided the solution for embedding traffic rules in the agent); subsumption [8] and layered control architec-
tures [38]. 

The main focus of Dreams4Cars has been on offline simulations and was concentrated on two main innovations: 
agent architecture and offline synthesis of behaviours and control. 

3.1 Agent architecture 
For the agent architecture our starting point was a subsumption architecture [8] with posterior centralized ac-
tion selection: namely a layered control architecture [38].  

We have then improved the Agent architecture with several ideas from the above cited literature. The architec-
ture hence goes beyond subsumption architectures and, for certain aspects, also beyond layered control archi-
tectures. Scientifically, it is an interesting example of application of many biological principles [39]–[43].  

However, apart from the biological inspiration, the agent architecture presents several technical and scientific 
innovations, especially if compared to the current automotive methodologies (the sense-think act paradigm, not 
to mention the less realistic end-to-end training). Worth to be stressed is, in particular, the topographic organi-
zation of the motor space with its fall-backs among which explainability and modularity, the way in which traffic 
rules can be incorporated into the agent via biasing mechanisms, the minimum commitment principle, the min-
imum intervention principle and the principle of lower veto that makes a sand box for programmed rules.  

The emergence of complex behaviours from the agent architecture and its founding principles is also important 
because it implies a fundamental lean and simple software, composed of a very compact core which, in turn, is 
economical and easy to maintain. 

Biasing mechanisms, inspired by works like [37], have been exploited to integrate traffic rules (and logical mod-
ule) into the agent sensorimotor behaviours. 

3.2 Synthesis of control and behaviours with off line mental imagery 

The process for the synthesis of behaviours is the second major contribution. It is based on the learning of mod-
els of the world that are then manipulated to synthetize action strategies. It is very efficient both with respect 
to produced behaviours and for sample efficiency. It bootstraps a hierarchical sensorimotor architecture where 
each level learning is accelerated by what was learned at the immediately precedent level. The obtained sen-
sorimotor system replaces corresponding aspects of traditional motor control (MPC, Optimal Control, Trajectory 
planning, etc., [6], [44]–[46]). In addition, elements of the process can be adopted individually and this is ex-
pected to facilitate exploitation and diffusion of the technology. 

While the synthesis process creates the blocks for higher-levels of simulation abstractions, these blocks become 
also available for the very highest-level, which may be implemented via Reinforcement Learning. This way Rein-
forcement Learning may proceed on a low-dimensional state-action space and be, in principle, more efficient 
because on top of efficient neural networks [47].  

It is also worth observing that, beginning at the level of motor primitives, the main goal for learning inverse 
models is not just learning the action for one specific goal, but a function that returns the value of actions for 
posterior action selection. This value function is the salience stored in the “motor cortex”. It is functionally equiv-
alent to the reward function in Reinforcement Learning, but its computation is not achieved via a trial and error 
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exploration (the RL way) but via a synthesis process based on the offline manipulation of learned models of the 
world (the inspiring idea of Dreams4Cars). 
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